INDEX

CHAPTER -I INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Organotins in the environment</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Chemistry of organotins</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Biological activity of organotins</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Tributyltin resistant bacteria</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Degradation of tributyltin by abiotic and biotic factors</td>
<td>7</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Abiotic factors</td>
<td>8</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Biotic factors</td>
<td>14</td>
</tr>
<tr>
<td>1.6</td>
<td>Heavy metal resistance in tributyltin resistant bacteria</td>
<td>15</td>
</tr>
<tr>
<td>1.7</td>
<td>Antibiotic resistance in tributyltin resistant bacteria</td>
<td>17</td>
</tr>
<tr>
<td>1.8</td>
<td>Biosorption and bioaccumulation of tributyltin compounds</td>
<td>18</td>
</tr>
<tr>
<td>1.9</td>
<td>Biochemical basis of tributyltin resistance in bacteria</td>
<td>20</td>
</tr>
<tr>
<td>1.9.1</td>
<td>Tributyltin induced exopolymer production</td>
<td>20</td>
</tr>
<tr>
<td>1.9.2</td>
<td>Effect of tributyltin on surfactant activity of exopoloymer</td>
<td>22</td>
</tr>
<tr>
<td>1.9.3</td>
<td>Tributyltin induced pigment synthesis</td>
<td>23</td>
</tr>
<tr>
<td>1.9.4</td>
<td>Protein profile of tributyltin resistant bacteria</td>
<td>23</td>
</tr>
<tr>
<td>1.10</td>
<td>Genetic basis of tributyltin resistance in bacteria</td>
<td>24</td>
</tr>
</tbody>
</table>

AIMS AND OBJECTIVES OF PRESENT WORK

Page 27

CHAPTER-II MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Collection of environmental samples</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Physicochemical analysis of samples</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Salinity</td>
<td>30</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Nitrite content</td>
<td>31</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Nitrate content</td>
<td>31</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Phosphate content</td>
<td>32</td>
</tr>
</tbody>
</table>
2.3 Determination of viable count and screening of bacterial isolates

2.4 Maintenance of TBTC resistant bacterial isolate

2.5 Identification of TBTC resistant bacterial isolate

2.6 Determination of environmental optimas for the growth of TBTC resistant bacterial isolates
 2.6.1 pH
 2.6.2 Temperature
 2.6.3 Salinity

2.7 Determination of heavy metal tolerance limit of bacterial isolate

2.8 Determination of antibiotic resistance of bacterial isolates

2.9 Selection of potential strain(s) for TBTC degradation studies

2.10 Biochemical characterization of *Pseudomonas aeruginosa* strain USS25.
 2.10.1 Regulation of TBTC toxicity by thiol (Monothiol: β-mercaptoethanol) and chelating agent (EDTA-Na₂)

2.11 Utilization of selected carbon and nitrogen source
 2.11.1 Carbon source: succinate, glycerol and glucose
 2.11.2 Nitrogen sources: nitrate (NH₄NO₃, KNO₃) and ammonium chloride (NH₄Cl)

2.12 Study the growth behaviour of TBTC resistant isolate in different media and selection of suitable media for TBTC degradation
 2.12.1 Study of TBTC degradation profile (TLC analysis)
 2.12.2 Time course study of TBTC degradation
 2.12.3 Effect of selected carbon sources (Glycerol and Succinate) on TBTC degradation
2.12.4 Purification, estimation and characterization of TBTC degradation product

2.13 Study of TBTC biosorption by bacterial cells

2.13.1 Standard curve of TBTC

2.13.2 Uptake by growing cells

2.14 Characterization of exopolymers

2.14.1 Study of EPS production under TBTC stress

2.14.2 Physicochemical characterization of exopolymer

2.14.3 Biosurfactant activity of exopolymer

2.15 Study of TBTC induced pigment production and characterization

2.16 Protein profile (SDS-PAGE) under TBTC stress

2.17 Molecular biological and genetic characterization of Pseudomonas aeruginosa strain USS25

2.17.1 Plasmid purification and agarose gel electrophoresis

2.17.2 Restriction mapping and agarose gel electrophoresis

2.17.3 Curing of plasmid using acridine orange

2.17.4 Nitrosoguanidine mutagenesis of Pseudomonas aeruginosa strain USS25 and selection of NTG induced mutants

2.17.5 Comparative study of mutant and wild type with reference to growth and TBTC degradation capability

2.18 Analytical techniques

2.18.1 Standard estimation method for protein and sugar
CHAPTER -III SCREENING, ISOLATION, IDENTIFICATION AND PHYSIOLOGICAL CHARACTERIZATION OF TBTC RESISTANT BACTERIAL ISOLATES

RESULT AND DISCUSSION

3.1 Details of sampling sites 55
3.2 Physicochemical characteristics of water samples 55
3.3 Viable count of bacteria in water sample 57
3.4 Screening, isolation and purification of TBTC resistant marine bacterial strains 58
3.5 Identification of TBTC resistant bacterial strains 59
3.6 Characterization of potent TBTC resistant bacterial strains 61
3.6.1 TBTC tolerance limit 61
3.6.2 Optimum temperature for growth 62
3.6.3 Optimum pH for growth 62
3.6.4 Optimum salinity for growth 64
3.7 Cross tolerance to heavy metals i.e. Hg, Cd, Zn 64
3.8 Antibiotic resistance 67
3.9 Selection of potent strain for TBTC degradation study 69

BIOCHEMICAL CHARACTERIZATION OF TBTC RESISTANT Pseudomonas aeruginosa strain USS25

RESULT AND DISCUSSION

4.1 Selection of suitable growth media for TBT degradation 70
4.2 Effect of selected carbon and nitrogen sources on growth 71
4.2.1 Carbon sources: glucose, succinate and glycerol
4.2.2 Nitrogen sources: Potassium nitrate, Ammonium nitrate and Ammonium chloride
4.3 TBTC uptake by bacterial cells
4.4 TBTC degradation profile (TLC analysis)
4.5 Time course study of TBTC degradation
4.6 Role of selected carbon sources (succinate and glycerol) on TBTC degradation
4.7 Purification and characterization of TBTC degradation product using IR, NMR spectroscopy and Gas Chromatography
4.8 Effect of thiol and chelating agent on TBTC toxicity
4.9 TBTC induced exopolymers production
4.10 TBTC induced surfactant activity of exopolymers
4.11 TBTC induced fluorescent pigment synthesis and its characterization
4.12 SDS-PAGE analysis of TBTC induced protein

CHAPTER-5
MOLECULAR BIOLOGICAL AND GENETIC CHARACTERIZATION OF TBTC RESISTANT Pseudomonas aeruginosa strain USS25

RESULT AND DISCUSSION

5.1 Plasmid profile
5.1.1 Purification of plasmid DNA (Alkaline lysis method) and Agarose Gel Electrophoresis
5.1.2 Characterization of plasmid DNA (Restriction mapping)
5.2 Determination of location of gene(s) conferring TBTC resistance and degrading capability: Acridine Orange curing of plasmid

5.3 NTG Mutagenesis of *Pseudomonas aeruginosa* USS25

5.3.1 NTG Mutagenesis and Screening of hyper TBTC resistant mutants

5.3.2 Characterization of mutants with reference to growth behaviour, TBTC tolerance and TBTC degradation

5.3.2.1 Comparison of wild type and NTG induced mutant with reference to growth behaviour at higher level of TBTC

5.3.2.2 Comparative TBTC degradation profile of wild type and NTG induced mutant

SUMMARY AND FUTURE PLANS.

APPENDICES

BIBLIOGRAPHY

PUBLICATIONS

N.B. Figures and tables of the respective chapters are placed at the end of it.