CHAPTER-7
Main Conclusion and Policy Implications
For many decades in the past, the SSI sector has functioned under the umbrella of protection and reservation but with economic liberalization, it is facing increasing national as well as international competition. Largely driven by free international flow of goods, increasing price and quality consciousness of Indian consumers, most ostensibly by the huge middle-class always eager to switch over to newer products and new designs, even the domestic market has started becoming more demanding. Accordingly, the SSI sector has to modernize itself to cater to changing tastes and trends of the domestic and foreign buyers for which up-gradation of production technologies and management is an indispensable pre-requisite. The process of technology up-gradation by SSI units, however, has been slow in spite of a number of policy initiatives and facilities offered by Government and financing institutions.

The present study, based on a mixture of both primary and secondary data seeks to assess the problems being faced by small-scale industries especially those in respect of adoption of improved technologies. More expressly, the study venture to identify major causes that are inhibiting the adoption of improved technologies and to assess the role of existing policies and programmes in overcoming them; it also analyzes the present procedure for availability of finance to SSI units for upgrading and modernization of their technologies and suggest measures for facilitating such services to small scale entrepreneurs; further it evaluates the requirements of improvements in skills, education and training both of entrepreneurs and workers among the SSI units to absorb and implement technologies in their diverse manifestations. Attempts were made to bring out the rural-urban contrasts while discussing these issues.

The study throws up numerous insights the whole lot of which need not be reproduced here. In what follows, some major conclusions, especially those connected
with the emerging technological challenges for the small-scale industries, are recapitulated for facilitating more enlightened and well-grounded policy making.

It comes out clearly that public policy and public institutions have not played any decisive role in shaping the pattern and pace of small-scale industrial development in India. The public sector support has undoubtedly been at work in providing a wide range of infrastructure facilities, education and training, finance to the existing as well as prospective enterprises, tax and other fiscal concessions, some labour welfare coverage, environment monitoring, and so on, for small-scale industrial development. Nonetheless, the quantum as well as the pattern of institutional support leaves much to be desired. To say the least, a very sizeable proportion of small enterprises, especially located in rural areas, have remained nearly completely bereft of one or the other type of institutional support. No wonder, therefore, a sizeable proportion of small-scale industrial enterprises continue to fall back upon the informal institutions that are notorious for inflicting innumerable production and marketing infirmities on them. In contrast, in urban areas, such enterprises seem to enlist a better access to the formal institutions. Nonetheless, an objective assessment of the situation leads us to believe that there are many policy areas where the formal public institutions have yet to make their presence felt both in rural and urban areas, just as the canvas of the existing support needs to be strengthened in other policy areas, perhaps more comprehensively for the rural areas.

In spite of wide claims, the state's contribution to technology promotion among the small and tiny industrial enterprises cannot be termed as satisfying. First, government agencies and formal training institutions are nearly completely absent from dissemination of information on new technology components such as improved machinery, new products, new designs and new raw materials. Most of the
entrepreneurs strive to procure such information from open market sources, and to a limited extent, through fellow entrepreneurs. Not only that the economic cost of getting information through non-institutional sources is high, but the involved process of trial and error often discourages many a prospective innovator to attempt the change, most significantly because the subsequent means needed for technological switch-over is also not forthcoming through public institutions. Perhaps, it is the sheer absence of the state or its lackadaisical approach at crucial stages of technology promotion that a fairly substantial proportion of the rural enterprises do not venture to switch over to new technology components, and prefer to stay back with the on-going but 'trusted' technology irrespective of the opportunity cost of staying back with what they have in hand.

Our field data clearly testify that we have still miles to go in the 'diffusion of IT innovations'. Even in the matter of the 'diffusion of old innovations', the rural enterprises show a few bright spots here and there a la availability of telephone; the total picture is not flattering at all, especially for introduction of new raw materials, new products or new designs. In spite of the international headlines that the educated and professionally trained Indians have been making, the grim reality is that a very big proportion of workers engaged in the SSI sector, including the entrepreneurs themselves, operate with low or sub-standard human skills. Investing in education and training is thus an inescapable compulsion for the Indian state. Delaying policy interventions on the front of human capital base in the economy in general and SSI sector in particular would not only exaggerate the domestic problems of unemployment and under-employment but would throw back a sizeable segment of India's manufacturing regime in international product, quality and price competitions. Can India afford it?
An underdeveloped education system with inadequate attention to science and technical education and inefficiency of institutional framework account for extremely poor skill composition of the industrial labour force which, in turn, seriously constrained assimilation of improved technology. Our study would like to emphasize that, *inter alia*, it is the low level of general and technical education, as also the severely limited role played by the formal training institutions in providing training that stand in the way of technological improvements. Our field data confirm a close relationship between the human capital base of workers and entrepreneurs and the rate of switch-over to an improved technology. Small units run with well-educated and trained entrepreneurs as well as workers have gone in for all kinds of improved technological changes. It is clear enough that higher education is highly instrumental in effecting switch-over to new technologies. We can think of a number of reasons for this. It may facilitate the accessibility of small entrepreneurs to information on new production processes, products and markets. Further, it may have a positive impact on the willingness of entrepreneurs to take risks. Education may, for example, indicate the extent to which entrepreneurs master the business tricks and more importantly when they intend to apply for formal or informal financial loans.

Moreover, it is clear that large modern laboratories and research institutions essentially support the interests of big and organised industrial enterprises. On a general plain, in India’s educational and training institutions, the concept of industrial technology has *largely* been treated as a monolithic entity, and much of what applies to urban industrial units is considered germane to rural industrial ventures as well; the management problems specific to the rural industrial culture, scattered production locales, low and medium level skills of the workforce including those of the entrepreneurs themselves, limited market reach, have generally remained outside the
domain of public training and educational institutions. There is thus a lot of re-thinking that India’s formal training institutions have to do firstly to appreciate and grapple with the specific technological needs of rural industry, and secondly, to re-orient their training modules and techniques to cater to the same.

The incidence of sub-contracting in the unorganized manufacturing sector is reported to be low both in rural and urban areas. Our field data do confirm that except for assured marketing other forms of assistance such as technical and financial assistance, supply of raw material and training etc. are relatively less prevalent, particularly in rural area. Moreover, the available evidences also testify that government and its associated institutions have not played a significant role in promoting sub-contracting; it can, at best, be termed as a limited contribution. Thus a crucial role that the state and public institutions can play, perhaps as a adjunct to the policy of technology promotion, to facilitate innovative and sustainable organisational changes in the industrial sector is being taken over by other organizational arrangements, sub-contracting stands atop among them. In particular, small-scale industrial units working under sub-contracting do show the capability of absorbing greater degree of technological up-gradation. Japanese system of sub-contracting has many lessons for India; it is high time to draw upon the same.

The most important barriers in adoption of improved technology are the financial aspects, basically the inadequate financial capacity of the unit itself. At other times, the cost of an economically viable technology makes it difficult to adopt. A large number of SSI units reported difficulty in obtaining sufficient funds from banks and financial institutions. The other barriers observed are lack of awareness or lack of knowledge and information about the availability of requisite technology, desire to avoid risk in adoption of improved technology, low level of indigenous
R&D, inadequate management skills and non-availability of technically qualified persons to understand the complexities of and operate with the new technology.

The R&D institutions should proactively assist the SSI units by giving all possible counselling on technology development, manpower planning, market development, equipment problem and other technical help in imparting technical know-how to the SSI units. The reduction of cost of production is an important factor for achieving competitiveness, market penetration and sometimes, the sheer existence of such units. The demands of the industry for reducing excise duties, taxes, interest rates etc. need sympathetic consideration by the Government, to the extent that the budgetary support for keeping on with the conventional policy of product reservation with implicit social burden of huge subsidies would be far in excess of tax concessions that would radically improve their production cost matrix.

Although India has a large infrastructural network to develop technology for use of industry and the small sector, yet only a handful of indigenous technologies could be developed. As a result our small-scale sector, for that matter, much of the industrial sector in general, has to depend on imported technologies. Dependence on imported technology is very costly making it the privilege of a few richer entrepreneurs in this sector. The study has highlighted several barriers in the adoption of improved technologies. In addition to the known problems of lack of finance, lack of information on availability of the required technology, inadequate skills etc. the survey indicates that an important reason for not adopting it is the factor of uncertainty and apprehension. Undoubtedly, uncertainty and apprehension weigh for more heavily in the economic calculus of small and tiny production units, especially the anticipated cost burden in case of technology failures. Smaller units would get completely ruined if a technology failure overtakes them.
The SSI units using improved technology can have better employment potential as compared to the units which are not using it. Thus it should be a national priority to provide modern technology to all non-users so that employment at the national level could be accelerated. Policy measures will be effective only if the individual entrepreneurs are motivated and made ready to take risks and institutionally helped to bear the costs involved in the adoption of the new technology. Industry associations have an important role to educate the small sector about the changes that are going on this sector, the necessity for technological changes and possible increases in profitability with such changes. It is necessary both for the Government and industry associations to change their attitude to inspire trust and confidence in the small units. The SSI owners should also be guided to bring about improvement in quality and efficiency with their own efforts.

The adoption of improved technology is a complex issue in which factors other than availability of finance and access to the desired technology are also involved. These include the pattern of ownership and management of the production unit, the requirements and availability of manpower, the willingness to take risks and other related factors which could motivate and encourage the owner to upgrade the existing technology of the unit. Closer cooperation between large and small-scale sector is highly desirable to foster the growth of small units as ancillary to large units. Availability of assured power supply at reasonable rates, assisting the units in obtaining quality raw materials, assisting them in publicizing their products and advising them about new and emerging markets will improve the economic health of SSI units. One important handicap generally pointed out in case of the SSI sector is that its productivity is low. It is attributed to low capital application and the means of production being labour intensive. For SSI units even with better technology,
productivity remains low as compared to large industry. Economic policies for the small scale sector should enable these industries to integrate with the global industry by getting into their global commodity chains for which they have to upgrade themselves in terms of improved technology, better management and marketing. Government must provide them with the facilities on priority basis towards financing, market networking, trained manpower and information technology. They should be encouraged to keep track of the on going changes in respective technologies. Marketing facilities for such units also should be improved. Ancillary tie-ups of SSI units with large manufacturing houses in the sector should be encouraged. The sector should develop sales and marketing strategies to dispose of the variety of goods produced by it. It is also highly advisable that the sector must adopt organizational improvements such as total quality management system (ISO 9000). There is also need for skill up-gradation for workers.

Some of the crucial areas on which immediate attention needs to be focused are as follows:

i. Institutional arrangements need to be developed for generating and disseminating adequate information on current technological developments as also the future trends. This would greatly contribute to proper technological assessment. As most small entrepreneurs are neither technically qualified, nor do they have adequate resources to buy scarce professional assistance for proper technological assessment of their projects, institutional support for gauging technological capability, both in the public and private sectors, needs to be developed and strengthened.

ii. No worthwhile and sustainable technological development can take place without the development of human resources. Human capital base of the Indian economy in general and the small-scale industrial sector in particular bears crucial significance
for the future growth, international competitiveness, and earning capabilities of masses especially in rural areas.

iii. Small units performing ancillary role to large industrial units may be ensured prompt and effective payments by large units for supplies made by the SSI units as per purchase order and quality standard.

iv. Continuous quality power supply at reasonable rates needs to be provided to SSI units.

v. Proper financial assistance could be provided to the SSI units for marketing their products so that they can withstand competition from large industries. Adequate credit at reasonable interest rates for modernization of SSI units would help them in creating new sustainable and productive employment.

vi. To improve the profitability of SSI units, commercial intelligence about new and emerging markets needs to be passed them.

vii. As entrepreneurs play the crucial role in the adoption of improved technology, institutional arrangements should be made for exposing them to new products, new designs which, going by the rich experiences of many other countries, can be best accomplished through Exhibitions, Trade Fairs, Buyers - Sellers Meets and Vendor Development Programmes.

viii. Location specific and product specific policies need to be devised. Special attention for rural areas is called for while dealing with numerous problems connected with production technology, marketing strategies, workers’ skill and state interventions and so on. In this context, the recent initiative of the central govt. in setting up Special Economic Zones (SEZs), for the development of export of specific products from a geographically contiguous area is expected to help small and tiny enterprises as well. (Govt. of India, 2002b: 14)
The adoption of new and improved technologies is vital for the growth of this sector and the removal of all types of barriers for the adoption of such technologies must be taken up in all earnestness by the Government, financial institutions, research and development agencies and also by the private sectors. All stakeholders should act together with a sense of mission.
Appendix 1: A Brief Note on Sample Design:

The field survey for the study was conducted in four states of India: Haryana-Rajasthan, Maharashtra and West Bengal during April-June 2000. While selecting manufacturing units for enumeration, purposive sampling was resorted to so that units of different size classes, belonging to different organization and having varied access to the markets for credit, raw materials, output etc. get duly represented in the sample. Attempts were also made to choose varied product groups which display contrasting features among them in terms of technology, production and it growth and trading organization. Information was collected from the entrepreneurs for the reference year 1999-2000 by using a detailed questionnaire. More expressly, questions pertaining to entrepreneurship, employment, technology, sub-contracting, production and future outlook etc. were asked. Besides entrepreneur/owner, we also enumerated some selected workers in each surveyed unit to obtain information not only about the functioning of the unit but also about the working environment and working condition in the respective units. This helped us to cross check some of the information provided by the entrepreneurs. In addition to this, we also visited local agencies/organizations, like the District Industrial Centres (DICs), Banks, Small Industry Associations, Co-operative Societies, Panchayats and a few parent enterprises which were contracting out some job operations or working under other sub-contracting arrangements.

There is an adequate justification for spreading our sample network over the chosen four states. For example, the preponderance of a wide variety of rural textiles, brass products, leather goods, handicrafts, etc. leads us to choose rural and urban areas of six districts (Murshidabad, Bankura, Burdwan, Howrah, Nadia and Kolkata) of West Bengal; Maharashtra survey, spread over four districts (Kolhapur, Sangli,
Sindhudurg and Sholapur), is expected to throw up problems of small and tiny production units in food processing, cotton textiles including powerlooms, leather and jewellery, etc. The third survey is spread over Faridabad and Gurgaon districts of Haryana, and the adjoining Bhiwadi Industrial Estate of Alwar district in Rajasthan. In terms of its location, production base and close-knit relationship with industries in Gurgaon district, Bhiwadi industrial estate need hardly be treated separately; for analytical convenience, therefore, we put the units surveyed from Faridabad and Gurgaon districts of Haryana, and industrial estate of Bhiwadi together under the rubric of Haryana survey. The Haryana and Maharashtra survey areas have registered a remarkably fast pace of industrial diversification in recent years, most ostensibly because of their fairly close proximity to the national capital Delhi and commercial capital Mumbai, respectively; in recent years, sub-contracting with big industrial units that has been emerging as an important industrial feature of the Indian economy, is discernible in both these survey areas, under a varying mingle of production-cum-marketing arrangements.

Due care was taken to ensure that adequate number of units are covered both from rural and urban areas, mostly in the proportion that existed in the 1994-95 national survey of the unorganized manufacturing; for India, rural-urban comparisons are extremely important, most strikingly for delineating the technological, infrastructural, production and marketing weaknesses of the rural enterprises. Adequate care was also taken to ensure that our sample covers as many of the product lines as possible. Again, in our sampling exercise for rural areas, a relatively much higher weight was purposely accorded to tiny and small units, so as to be in tune with the rural realities; this was not as much needed for the urban sample.
Further, a much wider geographical spread, stretched over a number of villages, or rural habitats, was inevitable for the rural sample, while the urban units could be sampled over from a few clusters or locations. As Table A1 shows, for rural units, we went over to 9 villages in Haryana, 16 in Maharashtra and 17 in West Bengal, covering 65, 77, and 73 units, respectively; for urban units, we surveyed 5 urban localities in Haryana, 10 in Maharashtra and 10 in West Bengal, covering 67, 68 and 49 units, respectively. Although on an average, 150 units were surveyed in each region, yet due to incomplete information and ambiguous/unclear answers, we could not go beyond 132 units in Haryana-Rajasthan, 145 in Maharashtra and 122 in West Bengal. Thus, information for a total of 399 units was finally analyzed, of which 215 came from the rural and the remaining 184 from the urban areas.

It may be mentioned that in drawing our sample frame, we did not include any unit employing more than 15 odd workers. This was done primarily because all national-level NSSO survey reports (e.g. 1984-85, 1989-90 and 1994-95 reports on unorganized manufacturing) that were to guide us in our sample choices, clearly suggested that an overwhelming majority of rural industrial enterprises did not employ more than 10 odd workers. However, we settled on a cut-off figure of 15 odd workers to accommodate a bit of the organized segment of rural manufacturing whose presence in rural India, albeit through definitional perversities, cannot be lost sight of. Table A2 clearly shows that for 45.0 per cent and 25.0 per cent of units surveyed in rural and urban area respectively, the size of employment does not exceed 5 workers; for those employing upto 10 workers, the respective percentages go as high as 74.0 per cent in the rural and 68.5 per cent in the urban areas.

Table A3 shows the range of products being manufactured by rural and urban units. It is pleasing to see that more than 70 per cent of rural units in our sample are
engaged in a variety of non agro-based manufacturing activities. As a matter of fact, all major branches of non agro-based manufacturing such as metal products, non-metal mineral-based products, basic metal and alloy products, machinery and (non-transport) equipment, transport equipment, rubber, plastic, petroleum and coal products, are covered by our rural sample units. The major activities under the agro-based segment are the manufacturing of a large variety of food products, textiles, and wood, paper and leather products.
### Table A1 Sample Locale and Related Information

<table>
<thead>
<tr>
<th>State/Districts</th>
<th>No. of Sample Units Covered</th>
<th>Name of Villages Covered</th>
<th>Name of Urban Localities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urban</td>
<td>Total</td>
</tr>
<tr>
<td>Haryana &amp; Rajasthan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faridabad</td>
<td>18</td>
<td>30</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gurgaon</td>
<td>47</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alwar (Rajasthan)</td>
<td>0</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td>67</td>
<td>132</td>
</tr>
<tr>
<td>Maharashtra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolhapur</td>
<td>20</td>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sindhudurg</td>
<td>20</td>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sangli</td>
<td>17</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solapur</td>
<td>20</td>
<td>17</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>68</td>
<td>145</td>
</tr>
<tr>
<td>West Bengal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bardhaman</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bankura</td>
<td>19</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolkatta</td>
<td>0</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murshidabad</td>
<td>7</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nadia</td>
<td>0</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howrah</td>
<td>46</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
<td>49</td>
<td>122</td>
</tr>
<tr>
<td>All Total</td>
<td>215</td>
<td>184</td>
<td>399</td>
</tr>
<tr>
<td>% Share</td>
<td>53.9</td>
<td>46.1</td>
<td>100</td>
</tr>
</tbody>
</table>
Table A2  Distribution of Sample Units by Location and Employment Size

<table>
<thead>
<tr>
<th>Employment Size</th>
<th>Rural No of Units</th>
<th>Rural % age</th>
<th>Urban No of Units</th>
<th>Urban % age</th>
<th>Total No of Units</th>
<th>Total % age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0-5</td>
<td>96</td>
<td>44.65</td>
<td>45</td>
<td>24.46</td>
<td>141</td>
<td>35.34</td>
</tr>
<tr>
<td>6-10</td>
<td>84</td>
<td>39.07</td>
<td>81</td>
<td>44.02</td>
<td>165</td>
<td>41.35</td>
</tr>
<tr>
<td>&gt; 10</td>
<td>35</td>
<td>16.28</td>
<td>58</td>
<td>31.52</td>
<td>93</td>
<td>23.31</td>
</tr>
<tr>
<td>Total</td>
<td>215</td>
<td>100.00</td>
<td>184</td>
<td>100.00</td>
<td>399</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Source: Field Survey Data.

Table A3  Distribution of Sample Units by Major Industrial Groups

<table>
<thead>
<tr>
<th>Industry Group</th>
<th>Rural No.</th>
<th>Rural % age</th>
<th>Urban No.</th>
<th>Urban % age</th>
<th>Total No.</th>
<th>Total % age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Food and Food Products</td>
<td>24</td>
<td>11.16</td>
<td>24</td>
<td>13.04</td>
<td>48</td>
<td>12.03</td>
</tr>
<tr>
<td>Textile Products etc.</td>
<td>16</td>
<td>7.45</td>
<td>15</td>
<td>8.15</td>
<td>31</td>
<td>7.77</td>
</tr>
<tr>
<td>Wood, Paper, Leather Products</td>
<td>22</td>
<td>10.24</td>
<td>29</td>
<td>15.75</td>
<td>51</td>
<td>12.79</td>
</tr>
<tr>
<td>Agro-based Manufacturing</td>
<td>62</td>
<td>28.84</td>
<td>68</td>
<td>36.96</td>
<td>130</td>
<td>32.58</td>
</tr>
<tr>
<td>Chemicals/Products</td>
<td>3</td>
<td>1.40</td>
<td>5</td>
<td>2.72</td>
<td>8</td>
<td>2.01</td>
</tr>
<tr>
<td>Rubber, Plastic, Coal, Pet. Etc.</td>
<td>14</td>
<td>6.51</td>
<td>19</td>
<td>10.33</td>
<td>33</td>
<td>8.27</td>
</tr>
<tr>
<td>Non-Met. Min. Products</td>
<td>29</td>
<td>13.49</td>
<td>4</td>
<td>2.17</td>
<td>33</td>
<td>8.27</td>
</tr>
<tr>
<td>Basic Metal</td>
<td>17</td>
<td>7.91</td>
<td>9</td>
<td>4.89</td>
<td>26</td>
<td>6.52</td>
</tr>
<tr>
<td>Metal Products</td>
<td>39</td>
<td>18.14</td>
<td>18</td>
<td>9.78</td>
<td>57</td>
<td>14.29</td>
</tr>
<tr>
<td>Machinery and Equipments</td>
<td>21</td>
<td>9.77</td>
<td>35</td>
<td>19.03</td>
<td>56</td>
<td>14.04</td>
</tr>
<tr>
<td>Transport Equipments</td>
<td>15</td>
<td>6.98</td>
<td>20</td>
<td>10.87</td>
<td>35</td>
<td>8.77</td>
</tr>
<tr>
<td>Other Manufacturing</td>
<td>15</td>
<td>6.98</td>
<td>6</td>
<td>3.26</td>
<td>21</td>
<td>5.26</td>
</tr>
<tr>
<td>Non-agro-based Manufacturing</td>
<td>153</td>
<td>71.16</td>
<td>116</td>
<td>63.04</td>
<td>269</td>
<td>67.42</td>
</tr>
<tr>
<td>Total</td>
<td>215</td>
<td>100.00</td>
<td>184</td>
<td>100.00</td>
<td>399</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Source: Field Survey Data.