1.0. Introduction

1.1 Silent spring: road towards degeneration
 1.1.1 Environmental contribution to neurodegenerative diseases
 1.1.2 Molecular process behind neurodegeneration
 1.1.3 Extracellular matrix induces the neurodegeneration process: Function of neural extracellular matrix
 1.1.4 Complex network of neural extracellular matrix Sulfation and glycosaminoglycan
 1.1.5 Function of neural extracellular matrix

1.2 Glycosaminoglycans (GAGs): a major component of Extracellular matrix
 1.2.1 Sulfation and glycosaminoglycan
 1.2.2 Importance of sulfur metabolism in neurotransmission
 1.2.3 Sulfated Glycosaminoglycan and neurodegenerative diseases
 1.2.4 Importance of degree of sulfation of GAG
 1.2.5 Sulfated GAGs and associated neurodegenerative diseases

1.3 Hyaluronan: a unique unsulfated GAG
 1.3.1 Hyaluronan metabolism:
 1.3.1.i. Biosynthesis of hyaluronan
 1.3.1 ii. Biodegradation of hyaluronan
 1.3.1 iii. Biological machinery of hyaluronan

1.4 Extracellular hyaladherins
 1.4.A. CNS specific
 1.4 B. Brain specific – hyaladherins expressed in brain only
 1.4.C. Eye specific

1.5 Cell-surface hyaladherins
1.6 Extra-cellular, cell-surface and intracellular hyaladherins

1.7 Hyaluronan in nervous system
 1.7.1 Brain:
 1.7.2 Eye:
 1.7.2.1. Anterior segment
 1.7.2.2. Posterior segment:
 1.7.3. Other parts of nervous system
 1.7.3.1 Neuronal membrane
 1.7.3.2 Central Nervous System

1.8 Biological functions of Hyaluronan

1.9 Size of Hyaluronan: Does it matter in disease pathogenesis?

1.10 Hyaluronan in neuronal activities
 1.10.1. Neuronal activities in brain
 1.10.2. Hyaluronan Signaling in remodeling process
 1.10.3. Intercerebral transplantation of neural precursor cells
 1.10.4. Implantation of HA hydrogel in defective brain tissue repairing
 1.10.5. Regulation of eye development
 1.10.5.1 Retinal development
 1.10.5.2 Lens development
 1.10.5.3 Axon sprouting in optic chiasma
 1.10.6. Other neuronal activities
 1.10.6.1 Neuronal development
 1.10.6.2 Neurulation
 1.10.6.3 Neuronal differentiation
 1.10.6.4 Neural crest development
 1.10.6.5. Development of the notochord
 1.10.6.6. Astrocyte proliferation and differentiation
 1.10.6.7. Neural cell migration
 1.10.6.8 Synaptogenesis and synaptic transmission
1.10.6.9. Activation of dendritic cells

1.11 Involvement of Hyaluronan in neurodegeneration: molecular processes

1.11.1. Protective role of Hyaluronan
 1.11.1(a) Mitochondrial dysfunction and Apoptosis
 1.11.1 (b) Cytoskeletal dysfunction

1.11.2 Damaging role of hyaluronan in demyelination
 1.11.2.1 Role of hyaluronan in demyelination in Central Nervous System neurodegenerative diseases
 1.11.2.2. Role of hyaluronan in demyelination in Peripheral Nervous System neurodegenerative diseases

1.12 Hyaluronan and neurodegenerative diseases: a detailed sketch

1.12.1. Hyaluronan in brain neurodegenerative diseases
 1.12.1.1. Syndrome of progressive dementia: Alzheimer’s disease (AD)
 1.12.1.2 Syndrome of disordered posture and movement: Parkinson’s disease (PD)
 1.12.1.3. Syndrome of slowly developing muscular weakness and atrophy or motor neuron diseases
 1.12.1.4 Prion diseases: Bovine spongiform encephalopathy (BSE)

1.12.2. Hyaluronan in retinal neurodegenerative diseases
 1.12.2.1. Retinitis pigmentosa
 1.12.2.2. Macular degeneration

1.12.3. Hyaluronan in other neurodegenerative diseases
 1.12.3.1. Aging
 1.12.3.2 Syndrome characterised by neurosensory deafness: Hearing loss
 1.12.3.3 Sensory and motor disorders: Sciatic nerve injury
1.13 Glaucoma: a model neurodegenerative disease
 1.13.1 Big puzzle: debate whether glaucoma is an eye disease or brain disorder
 1.13.2 Neurodegeneration in glaucoma
 1.13.3 Glaucoma and Extracellular matrix
 1.13.4 Hyaluronan connection with glaucoma

1.14 Hyaluronan metabolic genes:
 1.14.2. Hyaluronidase: Hyaluronan degrading genes
 1.14.3. Hyaluronan Binding Protein 1 (HABP1/α1qR/p32): A Hyaladherin

2.0. Aims and Objectives

Chapter I
Involvement of Hyaluronan metabolic genes in Glaucoma: A genetic approach

3.0. Introduction
 3.0.1 Single Nucleotide Polymorphism (SNP): a brief overview
 3.0.2 SNP a genetic marker: Worldwide initiative
 3.0.3 The SNP map of India: The Indian Genome Variation Consortium
 3.0.4 Diseases and SNP

3.1. Materials and Methods
 3.1.1 Selection of the study subjects
 3.1.2 Selection of SNPs for the study of allelic frequency of the hyaluronan metabolic genes in 24 normal populations as well as case-control study
 3.1.3 Genotyping
 3.1.4 Analysis of the genotypic data
3.2.A. Allele frequency pattern of the SNPs of the hyaluronan metabolic genes in 24 normal endogamous Indian populations

3.2.A.0. Background

3.2.A.1. Results
 3.2.A.1.1 Selection of the samples
 3.2.A.1.2 Observed heterozygosity of the SNPs in the normal Indian populations
 3.2.A.1.3 Allele frequency pattern in the normal Indian populations
 3.2.A.1.4 Haplotype analysis
 3.2.A.1.5 Patterns of Linkage Disequilibrium of HAS2 in Indian populations

3.2.B. Genetic association of the hyaluronan metabolic genes with glaucoma patients in Indian population: Case-control study

3.2.B.0. Background
 3.2.B.0.1 Glaucoma and SNPs

3.2.B.1 In search of genetic association of hyaluronan metabolic genes in Indian population
 3.2.B.1.1 Selection of the samples
 3.2.B.1.2 Correction for Hardy-Weinberg Equilibrium (HWE) and selection of SNPs for the case-control study
 3.2.B.1.3 Observed heterozygosity of the SNPs in the unrelated normal samples
 3.2.B.1.4 Allelic association study
 3.2.B.1.5 Genotypic association study
 3.2.B.1.6 Pattern of linkage disequilibrium
 3.2.B.1.7 Haplotypic association study
 3.2.B.1.8 Gene-gene interaction study

3.3. Discussion
Chapter II

Expression and localization of hyaluronan metabolic genes in in vitro simulated glaucomatous condition

4.0. Introduction

4.0.1 Cells related to glaucoma
 4.0.1.1 Retinal Ganglion cell (RGC5)
 4.0.1.2 RGC-5 and retinal ganglion cells
 4.0.1.3 Physiological relevance of RGC-5

4.0.2 Human trabecular meshwork (HTM)

4.0.3 Anatomy of trabecular meshwork

4.0.4 Hyaluronan in trabecular meshwork

4.0.5 Function of trabecular meshwork

4.0.6 Aqueous humor outflow

4.0.7 Glaucoma induction in trabecular meshwork

4.0.8 Bridging the genetic analysis with in vitro functional assay

4.1. Materials and Methods

Characterization of oxidative stress simulated glaucomatous condition in Retinal Ganglion Cell

4.2.A. Background

Characterization of oxidative stress simulated glaucomatous condition in retinal ganglion cells
 4.2.A.0.1 Retinal ganglion cell vulnerable to high level of oxidative stress
 4.2.A.0.2 Oxidative stress and glaucoma

 4.2.A.0.3 In vitro induction of ROS in RGC-5 cells
4.2.A.0.3 (i) H_2O_2 induces oxidative stress in RGC5
4.2.A.0.3 (ii) Tertiary butyl-hydroperoxide causes oxidative stress by producing ROS inside cells
4.2.A.0.3 (iii) Serum deprivation induces oxidative stress in RGC-5
4.2.A.0.3 (iv) Glutamate toxicity induces oxidative stress

4.2.A.0.4 Biomarkers for glaucoma
4.2.A.0.5 Expression of glaucoma related genes indicates glaucomatous condition in RGC-5
4.2.A.0.5.1 Marker for RGC-5
4.2.A.0.5.2 Marker for stress
4.2.A.0.5.3 Marker for apoptosis
4.2.A.0.5.4 Marker for IOP elevation
4.2.A.0.5.5 Marker for glaucoma

4.2.A.1 Results
4.2.A.1.1 Induction of oxidative stress in RGC-5 cells in the present study
4.2.A.1.2 RGC-5 population declines under oxidative stress
4.2.A.1.3 Ultrastructural inspection identifies cellular aberration under oxidative stress
4.2.A.1.4 Oxidants increase ROS level in RGC-5 cells:
4.2.A.1.5 Detection of ROS induced apoptosis and glaucomatous condition in RGC-5 cells: Expression of markers
4.2.A.1.6 Gamma synuclein expression does not vary under serum deprived condition at RGC-5
4.2.A.1.7 Differential impact of H_2O_2 and serum deprivation on RGC-5 cells
4.2.A.1.8 Oxidative stress induced cell death in RGC-5 follows classical apoptotic pathway

4.2.A.2 Discussion
................*Functional role of HABP1, HAS2 and HYAL3 in in vitro Glaucomatous condition*

4.2.B.0. Background

Role of hyaluronan metabolic proteins in *in vitro* glaucomatous conditions

4.2.B.0.1. A brief introduction to hyaluronan

4.2.B.0.2. Hyaluronan is abundantly present in eye

4.2.B.0.3. Hyaluronan plays important role in eye development and ocular wound healing

4.2.B.0.4. Hyaluronan influences aqueous outflow retardation in high tension glaucoma

4.2.B.0.5. Hyaluronan and oxidative stress

4.2.B.0.6. Expression of hyaluronan and hyaluronan related genes in glaucoma

4.2.B.1. Results

4.2.B.1.1. Role of Hyaluronan binding protein HABP1 in glaucoma

4.2.B.1.1.1. External oxidative stress has no effect on HABP1 in RGC-5 Cell

4.2.B.1.1.2. HABP1 protects cell exogenously but induces ROS after transient over-expression in RGC-5 cell

4.2.B.1.2. Role of hyaluronan and Hyaluronan degrading protein HYAL3 in glaucoma

4.2.B.1.2.1. Hyaluronan supplementation restores RGC-5 growth but hyaluronidase prevents its progress:

4.2.B.1.2.2. Hyaluronan changes localization under glaucomatous condition in RGC-5 cells

4.2.B.1.3. Role of hyaluronan synthesizing protein HAS2 in glaucoma

4.2.B.1.3.1. Induction of glaucomatous condition in HTM
4.2.B.1.3.2. Expression of HAS2 in oxidative stress induced in vitro glaucomatous condition in RGC-5 and HTM cells

4.2.B.1.3.3. Co-localization of HAS2 with Myocilin

4.2.B.1.3.4. Expression of HAS2 in glaucoma patients

4.2.B.2. Discussion

5.0 Summary 169 - 174

6.0 References 175 - 194