List of Figures

Figure 1.1: Diagrammatic representation of phosphorus cycle. 4
Figure 1.2: Walkers and Syers diagram showing the mobilisation and transformation of phosphorus in a soil development profile. 6
Figure 1.3: The cycle of phosphorus in the living system. 9
Figure 1.4: Flow chart of reactions by which P becomes occluded. 10
Figure 1.5: Phosphorus transformations during transfer from terrestrial to aquatic ecosystems. 11
Figure 1.6: Transformation reactions between soil, plant and rain water. 13
Figure 1.7: Phosphorus resources availability in the world. 20
Figure 1.8: Expected trend of net imports and export in different world regions. 20
Figure 2.1: General geology of Southern India. 32
Figure 2.2: Rainfall distribution in Southern India. 33
Figure 2.3: Satellite image of the sampling area from Google earth. 34
Figure 2.4: Yashodapura weathering profile. 36
Figure 2.5: Kakkavayal weathering profile. 37
Figure 2.6: Kushalnagar weathering profile. 37
Figure 2.7: Bachhalkad weathering profile. 39
Figure 3.1: Schematic diagram of analytical techniques used. 41
Figure 3.2: The A-CN-K and A-CNK-FM diagram. 50
Figure 3.3: Flow chart representation of SMT Protocol. 52
Figure 4.1: A-CN-K (a) and A-CNK-FM (b) plots for Yashodapura weathering profile. 62
Figure 4.2: A-CN-K (a) and A-CNK-FM (b) plots for Kakkavayal weathering profile. 63
Figure 4.3: Distribution of P fractions with respect to CIA for Yashodapura weathering profile (a) and Kakkavayal (b). 64
Figure 4.3: Distribution of OP, NAIP and AlP as percent of TP with respect to CIA for Yashodapura weathering profile (c) and Kakkavayal (d). 65
Figure 4.4: Distribution of organic matter with respect to CIA in Yashodapura (a) and Kakkavayal (b). 66
Figure 4.5: A-CN-K (a) and A-CNK-FM (b) plots for Kushalnagar weathering profile. 72
Figure 4.6: A-CN-K (a) and A-CNK-FM (b) plots for Bachhalkad weathering profile. 73
Figure 4.7: Distribution of P fractions with respect to CIA for Kushalnagar weathering profile (a) and Bachhalkad (b). 74
Figure 4.7: Distribution of OP, NAIP and AlP as percent of TP with respect to CIA for Kushalnagar weathering profile (c) and Bachhalkad (d). 75
Figure 4.8: Distribution of organic matter with respect to CIA in Kushalnagar (a) and Bachhalkad (b). 76
Figure 4.9: The distribution of various fractions of phosphorus in weathering profiles with respect to CIA. 77
Figure 6.1: Distribution of UCC normalized trace and some major elements in Kabini sediments. 93
Figure 6.2: A-CN-K (a) and A-CNK-FM (b) diagrams showing the weathering trend of sediments of Kabini river from Sargur (KbSa). 95
Figure 6.3: A-CN-K (a) and A-CNK-FM (b) diagrams showing the weathering trend of sediments of Kabini river from Nanjangud (KBS N).

Figure 6.4: A-CN-K (a) and A-CNK-FM (b) diagrams showing the weathering trend of sediments of Kabini river from Kathawadipura (KBS).

Figure 6.5: A-CN-K (a) and A-CNK-FM (b) diagrams showing the weathering trend of sediments of Kabini river from T. Narsipur before confluence (KBS).

Figure 6.6: A-CN-K (a) and A-CNK-FM (b) diagrams showing the weathering trend of sediments of Kabini river from T. Narsipur before confluence (TNK).

Figure 6.7: Variation in proportions of phosphorus fractions with distance downstream of Kabini river at Sargur (a), Nanjangud (b), Kathawadipura (c), and T. Narsipur before the confluence with Kaveri (d).

Figure 6.8: Distribution of different phosphorus fractions in sediments of Kabini River, OP (a), NAIP (b) and AlP (c).

Figure 6.9: Ternary diagrams of P fractions showing a travel of plots from OP to AlP dominated area with distance downstream in Kabini river.

Figure 6.10: Distribution of UCC normalized trace elements and some major elements.

Figure 6.11: A-CN-K (a) and A-CNK-FM (b) diagrams showing the weathering trend of sediments of Kaveri river from Siddapura (SIDCS).

Figure 6.12: A-CN-K (a) and A-CNK-FM (b) diagrams showing the weathering trend of sediments of Kaveri river from Kushalnagar (KUSH).

Figure 6.13: A-CN-K (a) and A-CNK-FM (b) diagrams showing the weathering trend of sediments of Kabini river from Harangi (HARS).

Figure 6.14: A-CN-K (a) and A-CNK-FM (b) diagrams showing the weathering trend of sediments of Kaveri river from T. Narsipur after confluence (TNC).

Figure 6.15: Variation in proportions of phosphorus fractions with distance downstream of Kabini river at (a), Kushalnagar (b), Harangi (c), and T. Narsipur after confluence with Kabini (d).

Figure 6.16: Relationship of OP (a), NAIP (b) and AlP (c) with CIA for the sediments of Kaveri River.

Figure 6.17: Ternary diagrams of P fractions showing a travel of plots from OP to AlP dominated area with distance downstream in Kaveri river.

Figure 6.18: Variation of phosphorus fractions in different grain sizes as percent, % OP (a), % NAIP (b) and % AlP (c).

Figure 6.19: Distribution of Phosphorus fractions in different grain sizes.

Figure 6.20: The distribution of P fractions in the bulk sediment samples used for P fractionation in different grain sizes.