BIBLIOGRAPHY

Pflanzen (BPP), 171: 7-16.

Ali, S.S. 1970. A study of post harvest fruit rot of
Musami (Citrus sinensis Linn. Osback) caused by
Rhizoctonia sp. Ph.D. Thesis, Saugar University,
Sagar (M.P.).

Ananthanarayana, Andal and K. Seshadri, 1965. Mycostatin
for prevention of anthracnose of bananas in storage.

Colletotrichum lindamuthianum and Helminthosporium
maydis during growth on isolated bean and corn cell
walls.

interaction V. Comparison of the ability of proteins
isolated from three varieties of Phaseolus vulgaris
to inhibit the endopolygalacturonases secreted by
three races of Colletotrichum lindamuthianum.

of extracellular cellulolytic and pectic enzymes by
Lasiodiplodia theobromae on sweet potato (Ipomea batatas)

Arya, A., D.K. Dwivedi, R.S. Pandey, D.N. Shukla, S.N.
Bhargava and Bihari Lal, 1981. "Chemical control of

*Bhargava, K.S. and S.C. Gupta, 1957. Market diseases of

Bilgrami, R.S. and R. Verma, 1978. Possible role of cellulases in rots of Lycopersicum esculentum and Lagenaria vulgaris caused by Cylindrocarpon tonkinenes and Fusarium semitectm (Abstr.). All India Symposium on Physiology of Parasitism, Jabalpur University, M.P.

Bull, R A. 1968. Auxins effects on the activity of *Pectinmethyl-

Cole, J.S. 1956. The pathogenicity of Botrytis cinerea, Sclerotium fructigena and Sclerotinia laxa with special
reference to the part played by pectolytic enzymes.

*Farkas, G.L. 1962. Role of phenolic compounds in the physiology of plant diseases and disease resistance.
Phytopath. Z., 44: 105-150.

Gupta, I. 1974. Studies on the physiology of anthracnose disease of papaya fruits with special reference to

Gupta, S.C. 1956. The production of pectolytic enzymes by

of some parasitic fungi. XI. Inhibitory effects of
some fungicides on the production and activity of
pectic enzymes of *Alternaria tenuis*. Agric. Univ. J.

of parasitic fungi. Pectic enzymes produced by
Penicillium expansum.Link. Ind. Phytopath., 17:
191-201.

*Hahn, F.F. and C.L. Wisseman Jr., 1951. Inhibition of
adaptive enzyme formation by antimicrobial agents.

by pectolytic enzymes. In: Fungal Pathogenicity and
the plant response (Eds. R.J.W. Byrde and C.V. Cutting).
Acad. Press, London.

Hancock, J.C. 1966. Degradation of pectic substance associated
with pathogenesis of *Sclerotinia sclerotiorum* in
sunflower and tomato stems. Phytopathology, 56: 979.

Hasija, S.K. and H.C. Agrawal, 1975. Pathological studies of *Irithotheicum roseum* causing fruit rot of *Malus sylvestris* and *Prunus bokharensis*. M.P. Vig. Acad.
II Convention Part III: B-8 (Abst.).

Liu, T.H. and K.W. King, 1967. Fragmentation during

Lumsden, R.D. and L.D. Roberta, 1970. Polygalacturonase production by Sclerotinia sclerotiorum in young cultures and in bean tissues during the early stages of pathogenesis. Phytopath., 60:

Mahadevan, A. and D. Chandramohan, 1967. Protease transeliminase and Furgic acid activity in Fusarium
wilted cotton plants. Phytopathologia Mediterranea, 6: 86-94.

Biochemistry, 3: 572-578.

Mehta, P., K.M. Vyas and S.B. Saksena, 1975b. Effect of carbohydrates on the production and activity of

Meeting, Am. Phytopath. Soc.

Patil, S.S. and A.E. Dimond, 1967. Inhibition of Verticillium
polygalacturonase by oxidation product of polyphenols. Phytopathology, 57: 492-496.

Reese, E.T., R.H.G. Siu and H.S. Levinson, 1950. The
biological degradation of soluble cellulose
derivatives and its relation to mechanism of cellulose

Saha, J.C. 1945. Studies in rots of Indian fruits F.
ocurrence of latent and superficial infection. Ind.

Satyanarayana, T. 1978. Thermophilic micro-organism and
their role in composting process. Ph.D. Thesis,
Saugar University, Sagar (M.P.), India.

Saxena, N. 1982. Studies on cell wall degrading enzymes
in relation to fungal pathogenesis. Ph.D. Thesis,
Saugar University, Sagar (M.P.).

nitro reductase by aureomycin in cell free extract.

*Schmithemmer, A.F. 1960. The relationship of growth,
pectolytic and cellulolytic activity of pathogen
variation among isolates of Colletotrichum phomoides
and related fruit rotting fungi. Dissertation Abstr.,
20: 2515-2516.

Sy-Ying, C. Wany and J.A. Pinckard, 1970. The association of cellulolytic and pectolytic enzymes with Diplodia ball

Third, T.S. 1977. Physiological and biochemical investigations of fruit rot of apple caused by *Clothridium corticola*. Ph.D. Thesis, Sagar University, Sagar (M.P.), India.

Tiwari, R. 1975. Host factors in the physiology of disease

in pathogenesis of obligate and facultative parasites causing sorghum diseases. Ind. Phytopath., 24: 305-309.

* Original not seen.
APPENDICES
APPENDIX I

Preparation of buffer used in the enzyme studies

Citrate-phosphate buffer (McLlvain) was used for
pH 2.5 to 9.5.

Stock solutions:

A : 0.1 M solution of citric acid (19.21 g in 1000 ml)
B : 0.2 M solution of dibasic sodium phosphate
 (53.65 g of Na₂HPO₄·7H₂O or 71.7 g Na₂HPO₄·12H₂O
 in 1000 ml). X ml of A + Y ml of B, diluted to a
 total of 100 ml.

pH : 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5.

References:

studies." In: Methods in Enzymology, eds. S.P.
APPENDIX II

Active ingredients and sources of some fungicides and antibiotics in the study

<table>
<thead>
<tr>
<th>Substances</th>
<th>Active ingredients</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungicides:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper-oxychloride</td>
<td>50% copper as copper-oxychloride</td>
<td>Tata Fison Industries Ltd., Pesticides Division, Union Bank Building, Dalal Street, Fort, Bombay-1.</td>
</tr>
<tr>
<td>Brassicol</td>
<td>75% Pentachloro-nitrobenzyme</td>
<td>Hoechst Pharmaceuticals Ltd., Khetan Bhawan, 198, J. Tata Road, Bombay-1.</td>
</tr>
<tr>
<td>Morestan</td>
<td>25% 6-methyl-quinoxaline 2,3-dithiocyclic carbonate</td>
<td>Baeyer (India) Ltd., Agrochem. Division, Negain Mahal, 82 Veer Nariman Road, Bombay-1.</td>
</tr>
<tr>
<td>Thiram</td>
<td>75% Tetramethyl-thiurum disulphide and inert carrier and adjuvants 25%</td>
<td>Pesticides India, P.B. No. 20, Udaisagar Road, Udaipur (Raj.).</td>
</tr>
<tr>
<td>Vitavax</td>
<td>2,3-dihydro-5-carboxanilido-6-methyl 1-oxathide</td>
<td>Tata Fison Industries Ltd., Pesticides Div., Union Bank Building, Dalal Street, Fort, Bombay-1.</td>
</tr>
<tr>
<td>Antibiotics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td></td>
<td>Hoechst Pharmaceuticals Ltd., Khetan Bhawan, 198, J. Tata Road, Bombay-1.</td>
</tr>
</tbody>
</table>

Contd...
Appendix II contd...

<table>
<thead>
<tr>
<th>Substances</th>
<th>Active ingredients</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythromycin</td>
<td>Erythromycin</td>
<td>Abott. Labs. (I) Pvt. Ltd., 13, M.G. Road,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bombay-1.</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td></td>
<td>Yash Pharma. Laboratories, 13, 8 Navyug Pvt. Ltd., Dr. Bhadakamkar Marg, Bombay-1.</td>
</tr>
<tr>
<td>Raficillin (Rifomycin)</td>
<td>3(4-dimethyl piperazin-1-yliminomethyl)</td>
<td>-do-</td>
</tr>
<tr>
<td>Nystatin (Mycostatin)</td>
<td>8-hydroxyquinoline benzoate</td>
<td>Squibb Sarabhai Chemical Ltd., Wads, Baroda.</td>
</tr>
</tbody>
</table>