TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>NOMENCLATURE</td>
<td>xvii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>About Madhuca Indica Oil</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Refined Grade Application</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Application</td>
<td>6</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Oil</td>
<td>6</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Oil Cake</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>POTENTIAL OF MADHUCA INDICA OIL</td>
<td>6</td>
</tr>
<tr>
<td>1.5.1</td>
<td>The advantages of vegetable oil as fuel for diesel engine</td>
<td>6</td>
</tr>
<tr>
<td>1.5.2</td>
<td>The disadvantages of vegetable oil as fuel for diesel engine</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>METHODS OF USING VEGETABLE OIL AS FUEL</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>VEGETABLE OILS TREATMENT</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>PROCESS</td>
<td></td>
</tr>
</tbody>
</table>
1.7.1 Preheating the Vegetable Oils 9
1.7.2 Transesterification of Vegetable Oils 9
1.7.3 Blending with Diesel and Alcohols 10
1.7.4 Use of Additives (Oxygenates) 10
1.8 BIO DIESEL 11
1.8.1 European emission norms 12
1.9 OBJECTIVE OF THIS WORK 13
1.10 OVERVIEW OF THE THESIS CHAPTERS 13

2 LITERATURE REVIEW

2.0 Introduction: 15
2.1 Biodiesel Production Methods 15
2.2 Performance and Emission Analysis 20
2.3 Summary 37

3 BIODIESEL PRODUCTION

3.1 Characterization of Vegetable Oils 38
3.2 Bio- fuel Formulation Techniques 40
3.2.1 Pyrolysis 40
3.2.2 Micro-Emulsification 41
3.2.3 Dilution 41
3.2.4 Transesterification 42
3.3 SELECTED OIL FOR PRESENT WORK 45
3.4 OPTIMIZATION OF TRANSESTERIFICATION PROCESS 49
4.1 Selection of Engine 69
4.2 Test Procedure 71
4.3 Error Analysis 71

5 RESULTS & DISCUSSIONS
5.1 COMBUSTION PARAMETERS AT STANDARD INJECTION TIMING

5.1.1 Ignition Delay (ID) 72
5.1.2 Variation of Cylinder Pressure 73
5.1.3 Peak pressure (p_{max}) 75
5.1.4 Heat release rate (Q) 76

5.2 PERFORMANCE AND EMISSION CHARACTERISTICS AT STANDARD INJECTION TIMING

5.2.1 Brake thermal efficiency (BTE) 77
5.2.2 Exhaust gas temperature (T_{eg}) 79
5.2.3 Unburned hydrocarbon (UBHC) emissions 79
5.2.4 Carbon monoxide (CO) emissions 80
5.2.5 Particulate matter (PM) 81
5.2.6 Nitrogen oxide (NOx) emissions 82

5.3 SUMMARY OF TESTS WITH STANDARD INJECTION TIMING 83

5.4 COMBUSTION CHARACTERISTICS WITH RETARDATION OF INJECTION TIMING

5.4.1 Start of Combustion (SOC) 85
5.4.2 Ignition Delay (ID) 86
5.4.3 Variation of cylinder pressure 87
5.4.4 Peak Pressure (p_{max}) 88
5.4.5 Rate of Heat Release (Q) 89

5.5 PERFORMANCE AND EMISSION
CHARACTERISTICS WITH RETARDATION OF INJECTION TIMING

5.5.1 Brake Thermal Efficiency (BTE) 90
5.5.2 Exhaust Gas Temperature (T_{eg}) 91
5.5.3 Unburned hydrocarbon (UBHC) Emissions 92
5.5.4 Carbon Monoxide (CO) Emissions 93
5.5.5 Particulate matter (PM) 94
5.5.6 Nitrogen oxide (NOx) emissions 95

5.6 SUMMARY of tests with RETARDATION of INJECTION TIMING 96

5.7 EXHAUST GAS RECIRCULATION 98

5.7.1 Introduction 98
5.7.2 EGR Layout 98
5.7.3 Air Flow Measurement 99
5.7.4 Fuel Flow Measurement 100
5.7.5 Testing Procedure 100

5.8 NOX REDUCTION USING DIETHYL ETHER AS AN ADDITIVE/BLEND 104

5.8.1 Engine Tests with Biodiesel - DEE 105
5.8.2 Brake Thermal Efficiency 105
5.8.3 Carbon Monoxide Emission 106
5.8.4 Smoke Density 107
5.8.5 Important Findings 108
6 CONCLUSIONS

6.1 OPTIMIZATION OF TRANSESTERIFICATION PROCESS 110
6.2 METHYL ESTERS AS FUELS 111
6.3 EFFECT OF INJECTION TIMING 111
6.4 EFFECT OF EGR ON PERFORMANCE AND EMISSIONS 112
6.5 EFFECT OF ADDITIVE (DEE) ON PERFORMANCE AND EMISSIONS 112
6.6 SCOPE FOR FUTURE WORK 112

REFERENCES 114

APPENDIX-1 125

LIST OF PUBLICATIONS 129

CURRICULUM VITAE 131