INDEX

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>P. NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1 - 7</td>
</tr>
<tr>
<td>II</td>
<td>8 - 32</td>
</tr>
<tr>
<td>III</td>
<td>33 - 54</td>
</tr>
<tr>
<td>IV</td>
<td>55 - 93</td>
</tr>
<tr>
<td>V</td>
<td>94 - 126</td>
</tr>
<tr>
<td>VI</td>
<td>127 - 155</td>
</tr>
<tr>
<td>VII</td>
<td>156 - 168</td>
</tr>
<tr>
<td>LIST OF PAPERS</td>
<td>169 - 170</td>
</tr>
<tr>
<td>PUBLISHED/ACCEPTED</td>
<td></td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>171 - 173</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>TITLE</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>1.1</td>
<td>LITERATURE SURVEY</td>
</tr>
<tr>
<td>1.2</td>
<td>OUT-LINE OF THE STUDY</td>
</tr>
<tr>
<td>II</td>
<td>EOQ MODELS: WITHOUT AND WITH FINITE PRODUCTION RATE FOR DETERIORATING ITEMS UNDER RANDOM SUPPLY</td>
</tr>
<tr>
<td>2.0</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>2.1</td>
<td>LOT SIZE MODEL FOR DETERIORATING ITEMS UNDER RANDOM SUPPLY</td>
</tr>
<tr>
<td>2.1.1</td>
<td>ASSUMPTIONS AND NOTATIONS</td>
</tr>
<tr>
<td>2.1.2</td>
<td>DETERMINATION OF TOTAL EXPECTED COST FUNCTION AND ECONOMIC ORDER QUANTITY</td>
</tr>
<tr>
<td>2.1.3</td>
<td>PARTICULAR CASES</td>
</tr>
<tr>
<td>2.1.4</td>
<td>STATISTICAL ANALYSIS BASED ON HYPOTHETICAL PROBLEM</td>
</tr>
<tr>
<td>2.1.5</td>
<td>INTERPRETATIONS</td>
</tr>
<tr>
<td>2.2</td>
<td>LOT SIZE MODEL WITH FINITE PRODUCTION RATE FOR DETERIORATING ITEMS UNDER RANDOM SUPPLY</td>
</tr>
<tr>
<td>2.2.1</td>
<td>ASSUMPTIONS AND NOTATIONS</td>
</tr>
<tr>
<td>2.2.2</td>
<td>DETERMINATION OF TOTAL EXPECTED COST AND ECONOMIC ORDER QUANTITY</td>
</tr>
<tr>
<td>2.2.3</td>
<td>PARTICULAR CASES</td>
</tr>
<tr>
<td>2.2.4</td>
<td>STATISTICAL ANALYSIS BASED ON HYPOTHETICAL PROBLEM</td>
</tr>
</tbody>
</table>
III PROBABILISTIC TIME SCHEDULING MODELS UNDER PRICE CHANGE ANTICIPATIONS

3.0 INTRODUCTION

3.1 PROBABILISTIC TIME SCHEDULING INVENTORY MODEL UNDER KNOWN PRICE INCREASE

3.1.1 ASSUMPTIONS AND NOTATIONS

3.1.2 DETERMINATION OF OPTIMUM CYCLE TIME, GAIN FUNCTION AND OPTIMUM ORDER LEVEL

3.1.3 SOME PARTICULAR FORMS

3.1.4 STATISTICAL ANALYSIS BASED ON HYPOTHETICAL PROBLEMS

3.1.5 INTERPRETATIONS

3.2 PROBABILISTIC TIME SCHEDULING INVENTORY MODEL UNDER TEMPORARY PRICE DISCOUNT

3.2.1 ASSUMPTIONS AND NOTATIONS

3.2.2 DETERMINATION OF OPTIMUM CYCLE TIME, GAIN FUNCTION AND OPTIMUM ORDER LEVEL

3.2.3 SOME PARTICULAR FORMS

3.2.4 STATISTICAL ANALYSIS BASED ON HYPOTHETICAL PROBLEMS

3.2.5 INTERPRETATIONS

3.3 CONCLUDING REMARKS

IV PROBABILISTIC AND DETERMINISTIC EOQ MODELS FOR EXPONENTIALLY DETERIORATING ITEMS UNDER PRICE CHANGE ANTICIPATIONS
4.0 INTRODUCTION

4.1 PROBABILISTIC TIME SCHEDULING MODEL FOR EXPONENTIALLY DETERIORATING INVENTORY UNDER KNOWN PRICE INCREASE

4.1.1 ASSUMPTIONS AND NOTATIONS

4.1.2 DETERMINATION OF OPTIMUM CYCLE TIME, GAIN FUNCTION AND OPTIMUM ORDER LEVEL

4.1.3 SOME PARTICULAR FORMS

4.1.4 STATISTICAL ANALYSIS BASED ON HYPOTHETICAL PROBLEMS

4.1.5 INTERPRETATIONS

4.2 PROBABILISTIC TIME SCHEDULING MODEL FOR EXPONENTIALLY DETERIORATING INVENTORY UNDER TEMPORARY PRICE DISCOUNT

4.2.1 ASSUMPTIONS AND NOTATIONS

4.2.2 DETERMINATION OF OPTIMUM CYCLE TIME, GAIN FUNCTION AND OPTIMUM ORDER LEVEL

4.2.3 SOME PARTICULAR FORMS

4.2.4 STATISTICAL ANALYSIS BASED ON HYPOTHETICAL PROBLEMS

4.2.5 INTERPRETATIONS

4.3 A LOT SIZE MODEL FOR EXPONENTIALLY DETERIORATING INVENTORY UNDER KNOWN PRICE INCREASE

4.3.1 ASSUMPTIONS AND NOTATIONS

4.3.2 DETERMINATION OF OPTIMUM CYCLE
4.3.3 Statistical analysis based on hypothetical problem

4.3.4 Interpretations

4.4 An EOQ model for exponentially deteriorating inventory under temporary price discount

4.4.1 Assumptions and notations

4.4.2 Determination of optimum cycle time, gain function and optimum purchase quantity

4.4.3 Statistical analysis based on hypothetical problem

4.4.4 Interpretations

4.5 Concluding remarks

5.0 Introduction

5.1 Probabilistic time scheduling model when delay in payments is permissible

5.1.1 Assumptions and notations

5.1.2 Determination of average expected total cost, optimum cycle time and economic order quantity

5.1.3 Some particular forms

5.1.4 Computational procedure
5.1.5 Statistical Analysis Based On Hypothetical Problem

5.1.6 Interpretations

5.2 Probabilistic Time Scheduling Model

5.2.1 Assumptions and Notations

5.2.2 Determination of Average Expected Total Cost, Optimum Cycle Time and Economic Order Quantity

5.2.3 Some Particular Forms

5.2.4 Computational Procedure

5.2.5 Statistical Analysis Based On Hypothetical Problems

5.2.6 Interpretations

5.3 A Lot Size Model For Exponentially Deteriorating Inventory When Delay In Payments Is Permissible

5.3.1 Assumptions and Notations

5.3.2 Determination of Total Cost, Optimum Cycle Time and Economic Order Quantity

5.3.3 Computational Procedure

5.3.4 Statistical Analysis Based On Hypothetical Problems

5.3.5 Interpretations

5.4 Concluding Remarks

VI Probabilistic Order Level System:
WITHOUT AND WITH EXPONENTIALLY DETERIORATING INVENTORY WHEN DELAY IN PAYMENTS IS PERMISSIBLE

6.0 INTRODUCTION

6.1 PROBABILISTIC ORDER LEVEL SYSTEM WHEN DELAY IN PAYMENTS IS PERMISSIBLE
 6.1.1 ASSUMPTIONS AND NOTATIONS
 6.1.2 DETERMINATION OF AVERAGE EXPECTED TOTAL COST AND FORMULA FOR OPTIMUM ORDER LEVEL

6.2 PROBABILISTIC ORDER LEVEL SYSTEM WHEN ITEMS IN INVENTORY DETERIORATE EXPONENTIALLY AND DELAY IN PAYMENTS IS PERMISSIBLE
 6.2.1 ASSUMPTIONS AND NOTATIONS
 6.2.2 DETERMINATION OF TOTAL AVERAGE EXPECTED COST AND OPTIMUM ORDER LEVEL

6.3 CONCLUDING REMARKS

PROBABILISTIC ORDER LEVEL SYSTEM WITH LEAD TIME WHEN DELAY IN PAYMENTS IS PERMISSIBLE

7.0 INTRODUCTION

7.1 PROBABILISTIC ORDER LEVEL SYSTEM WITH LEAD TIME WHEN DELAY IN PAYMENTS IS PERMISSIBLE
 7.1.1 ASSUMPTIONS AND NOTATIONS
 7.1.2 DETERMINATION OF AVERAGE EXPECTED TOTAL COST AND OPTIMUM ORDER LEVEL