CONTENTS

Abstract
List of Tables
List of Figures
List of Abbreviations

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chapter 1 Introduction and review of literature</td>
<td>1-73</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Review of related literature</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1</td>
<td>The Liver – Structure and functions</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1.1</td>
<td>The structure of liver</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1.2</td>
<td>Liver Functions</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Reactive oxygen species and oxidative stress</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Antioxidant defense mechanism</td>
<td>11</td>
</tr>
<tr>
<td>1.2.3.1</td>
<td>Endogenous antioxidants</td>
<td>11</td>
</tr>
<tr>
<td>1.2.3.2</td>
<td>Exogenous antioxidants</td>
<td>13</td>
</tr>
<tr>
<td>1.2.3.3</td>
<td>Natural antioxidants</td>
<td>14</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Oxidative stress and liver damage</td>
<td>17</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Liver disorders caused by drugs and toxins</td>
<td>18</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Hepatic xenobiotic metabolism</td>
<td>23</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Hepatotoxins and their effect</td>
<td>24</td>
</tr>
<tr>
<td>1.2.8</td>
<td>Types of hepatic diseases</td>
<td>27</td>
</tr>
<tr>
<td>1.2.9</td>
<td>Management of hepatic diseases</td>
<td>27</td>
</tr>
<tr>
<td>1.2.9.1</td>
<td>Drugs for liver diseases</td>
<td>28</td>
</tr>
<tr>
<td>1.2.9.2</td>
<td>Herbal medicine</td>
<td>30</td>
</tr>
<tr>
<td>1.2.10</td>
<td>Hepatoprotective study</td>
<td>32</td>
</tr>
<tr>
<td>1.2.11</td>
<td>Hepatic fibrosis and cirrhosis</td>
<td>39</td>
</tr>
<tr>
<td>1.2.11.1</td>
<td>Pathogenesis of hepatic fibrosis</td>
<td>41</td>
</tr>
<tr>
<td>1.2.12</td>
<td>Cancer</td>
<td>44</td>
</tr>
<tr>
<td>1.2.12.1</td>
<td>Etiology of cancer</td>
<td>45</td>
</tr>
<tr>
<td>1.2.12.2</td>
<td>Stages of Carcinogenesis</td>
<td>49</td>
</tr>
<tr>
<td>1.2.12.3</td>
<td>Cancer prevention and treatment</td>
<td>50</td>
</tr>
</tbody>
</table>
1.2.13 Hepatocellular carcinoma 56
 1.2.13.1 Risk factors of hepatocellular carcinoma 56
 1.2.13.2 Developmental stages of hepatocellular carcinoma 60
 1.2.13.3 Experimental model – NDEA induced hepatocellular carcinoma 61
1.2.14 Selection of the plant for present study 64
 1.2.14.1 Plant profile 65
 1.2.14.2 Reported activities of Woodfordia fruticosa 66
 1.2.14.3 Chemical constituents of Woodfordia fruticosa 70

Chapter 2 Materials and Methods 75-106

2.1 Materials 77
 2.1.1 Plant material 77
 2.1.2 Experimental animals 77
 2.1.3 Cell line 77
 2.1.4 Chemicals 78
 2.1.5 Diagnostic reagents and kits 80
 2.1.6 Reagents 80
 2.1.7 Instruments 82
 2.1.8 Glasswares and plastic wares 82

2.2 Methods 82
 2.2.1 Preparation of plant extract 82
 2.2.2 Preliminary phytochemical screening 83
 2.2.2.1 Test for alkaloids 84
 2.2.2.2 Test for flavonoids 84
 2.2.2.3 Test for phenolic compounds and tannins 85
 2.2.2.4 Test for glycosides 85
 2.2.2.5 Test for steroids 86
 2.2.2.6 Test for saponins 86
 2.2.2.7 Test for fixed oils and fats 86
 2.2.2.8 Test for carbohydrates 86
 2.2.2.9 Test for protein and amino acids 87
 2.2.3 In vitro antioxidant assays 88
 2.2.3.1 Determination of total phenolic compounds in the extracts 88
2.2.3.2 Determination of total flavonoid content in the extracts 88
2.2.3.3 Evaluation of total antioxidant capacity 88
2.2.3.4 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) assay 89
2.2.3.5 Assay of hydroxyl radical-scavenging activity 89
2.2.3.6 Determination of reducing power 90
2.2.4 In vivo experimental designs 90
2.2.4.1 Induction of hepatotoxicity 90
2.2.4.2 Induction of hepatic fibrosis 91
2.2.4.3 Induction of hepatocellular carcinoma 91
2.2.5 Collection of serum samples 92
2.2.6 Collection of tissue samples and its homogenization 92
2.2.7 In vivo antioxidant assays – Biochemical tests 92
2.2.8 Estimation of hydroxyproline content 93
2.2.9 Histopathological studies 93
2.2.10 Immunohistochemical analysis 94
2.2.10.1 Immunohistochemical analysis of collagen III 94
2.2.10.2 Immunohistochemical analysis of VEGF 95
2.2.10.3 Immunohistochemical analysis of PCNA 95
2.2.10.4 Immunohistochemical analysis of Cyclin D1 95
2.2.11. In vitro cytotoxic and apoptotic assays 95
2.2.11.1 MTT assay 95
2.2.11.2 DAPI staining assay 96
2.2.11.3 JC-1 staining 97
2.2.12 Liquid chromatography-mass spectrometry (LC-MS) analysis 98
2.2.13 Statistical analysis 99
2.2.14 Procedures for in vivo antioxidant assays 99
2.2.14.1 Estimation of reduced glutathione (GSH) 99
2.2.14.2 Assay of glutathione-s-transferase (GST) 100
2.2.14.3 Assay of glutathione reductase (GR) 101
2.2.14.4 Assay of glutathione peroxidase (GPx) 102
2.2.14.5 Assay of Catalase (CAT) 103
2.2.14.6 Determination of lipid peroxidation (MDA) 104
Chapter 3 Phytochemical screening and in vitro antioxidant evaluation of Woodfordia fruticosa Kurz flowers

3.1 Introduction

3.2 Materials and methods

3.2.1 Chemicals

3.2.2 Preparation of plant extracts

3.2.3 Preliminary phytochemical screening

3.2.4 Evaluation of in vitro antioxidant activity

3.2.5 Liquid chromatography-mass spectrometry (LC-MS) analysis of MEWF

3.3 Results

3.3.1 Preliminary phytochemical screening

3.3.2 In vitro antioxidant activity

3.3.3 LC-MS analysis of MEWF

3.4 Discussion

Chapter 4 Preventive and curative effect of Woodfordia fruticosa Kurz flowers on thioacetamide induced oxidative stress in rats

4.1 Introduction

4.2 Materials and Methods

4.2.1 Chemicals

4.2.2 Animals and diets

4.2.3 Preparation of plant extract

4.2.4 Preparation of doses and treatments

4.2.5 Experimental design of pre-treatment evaluation

4.2.6 Experimental design of post-treatment evaluation

4.2.7 Serum enzyme analysis

4.2.8 Tissue analysis

4.2.9 Histopathological studies

4.2.10 Statistical analysis

4.3 Results

4.3.1 Effect of TAA and MEWF on serum marker enzymes

4.3.2 Pre-treatment effect of MEWF on TAA induced changes in the antioxidant status of hepatic and renal tissues
4.3.3 Histopathological analysis of pre treated groups

4.3.4 Post-treatment effects of MEWF on TAA induced changes in the antioxidant status of hepatic and renal tissues

4.3.5 Histopathological analysis of post treated groups

4.4 Discussion

Chapter 5 Methanolic extract of Woodfordia fruticosa Kurz flowers ameliorates carbon tetrachloride induced chronic hepatic fibrosis in rats

5.1 Introduction

5.2 Materials and methods

5.2.1 Chemicals

5.2.2 Animals and diets

5.2.3 Preparation of plant extract

5.2.4 Preparation of doses

5.2.5 Induction of hepatic fibrosis

5.2.6 Experimental design

5.2.6.1 Pre-treatment evaluation

5.2.6.2 Post-treatment evaluation

5.2.7 Serum enzyme analysis

5.2.8 Tissue analysis

5.2.8.1 Hydroxyproline content in the liver

5.2.9 Histopathological studies

5.2.10 Immunohistochemical analysis of collagen III

5.2.11 Statistical analysis

5.3 Results

5.3.1 Body weight and liver weight

5.3.2 Serum enzymes of pre and post treatment groups

5.3.3 Tissue antioxidants and other biochemical constituents of pre-treated groups

5.3.4 Tissue antioxidants and other biochemical constituents of post-treated groups

5.3.5 Histopathology

5.3.6 Immunohistochemical localization of Collagen-III

5.4 Discussion
Chapter 6 Preventive and curative effect of methanolic extract of Woodfordia fruticosa Kurz flowers on N-nitrosodiethyl amine induced hepatocellular carcinoma in rats

6.1 Introduction

6.2 Materials and Methods

6.2.1 Chemicals

6.2.2 Animals and diets

6.2.3 Preparation of plant extract

6.2.4 Preparation of doses

6.2.5 Induction of hepatocellular carcinoma

6.2.6 Experimental design

6.2.6.1 Preventive effect of the extract

6.2.6.2 Curative effect of the extract

6.2.7 Serum enzyme analysis

6.2.8 Morphometry evaluation

6.2.9 Tissue biochemical analysis

6.2.10 Histopathological analysis

6.2.11 Immunohistochemical analysis

6.2.11.1 Immunohistochemical analysis of VEGF

6.2.11.2 Immunohistochemical analysis of PCNA

6.2.11.3 Immunohistochemical analysis of Cyclin D1

6.2.12 Statistical analysis

6.3 Results

6.3.1 Body weight

6.3.2 Liver weight

6.3.3 Serum enzymes

6.3.4 Liver morphology

6.3.5 Morphometry

6.3.6 Tissue antioxidants and other biochemical constituents

6.3.7 Histopathology

6.3.8 Immunohistochemical localization of VEGF

6.3.9 Immunohistochemical localization of PCNA

6.3.10 Immunohistochemical localization of cyclin D1

6.4 Discussion
Chapter 7 Cytotoxic and apoptotic activities of methanolic extract of *Woodfordia fruticosa* Kurz flowers and its fractions on human hepatoma PLC/PRF/5 cells

7.1 Introduction

7.2 Materials and methods

7.2.1 Chemicals

7.2.2 Cell culture

7.2.3 Preparation of plant extract and its sub fractions

7.2.4 Preparation of drugs

7.2.5 Cytotoxicity study

7.2.5.1 MTT assay of MEWF and sub fractions of MEWF

7.2.6 Detection of apoptosis

7.2.6.1 DAPI staining assay

7.2.6.2 JC-1 staining

7.2.7 Liquid chromatography-mass spectrometry (LC-MS) analysis of CHF

7.2.8 Statistical analysis

7.3 Results

7.3.1 Cytotoxicity study

7.3.1.1 MTT assay of MEWF

7.3.1.2 MTT assay of sub fractions of MEWF

7.3.2 Apoptosis assays

7.3.2.1 Dapi staining

7.3.2.2 JC-1 staining

7.3.3 LC-MS of CHF

7.4 Discussion

Summary and Conclusion

Bibliography

List of publications