Chapter III

Edge Product Graphs

Rosa called a function f, a β-valuation of a graph G with q edges if f is an injection from the vertices of G to the set $\{0, 1, \ldots, q\}$ such that, when each edge xy is assigned the label $|f(x) - f(y)|$, the resulting edge labels are distinct [30]. The notation of a sum graph was introduced by Harary [11] in 1990. A graph $G(V, E)$ is said to be a sum graph if there exists a bijective labeling from the vertex set V to a set of positive integers S such that $(x \times y) \in E$ if and only if $f(x) + f(y) \in S$.

In the chapter, we define the edge function, edge product function, edge product graph and unit edge product graph for a given graph G. The properties of edge product graphs are also discussed. The concepts are then extended to prove few theorems.

Definition 3.1.1.

Let $G(V, E)$ be a simple and connected graph. Let P be a set of positive integers with $|E| = |P|$. Then any bijection $f : E \rightarrow P$ is called an edge function of the graph G.

Definition 3.1.2.

The function $F(v) = \prod \{f(e) / \text{edge } e \text{ is incident on } v\}$ on V is called an edge product function of the edge function f.

Definition 3.1.3.

The graph $G(V, E)$ is said to be an edge product graph if there exists an edge function $f : E \rightarrow P$ such that the edge function f and the corresponding edge product function F of f on V have the following two conditions.
1. \(F(v) \in P \) for every vertex \(v \in V \)

2. If \(f(e_1) \times f(e_2) \times \ldots \times f(e_p) \in P \) for some edges \(e_1, e_2, \ldots, e_p \in E \) then the edges \(e_1, e_2, \ldots, e_p \) are all incident on \(v \in V \)

Example: Let \(G(V, E) \) be a given graph where \(V = \{ u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_9 \} \) the vertex set and \(E = \{ u_1u_2, u_2u_3, u_3u_4, u_2u_7, u_3u_5, u_3u_6, u_8u_9 \} \) the edge set. Define the edge function \(f : E \to P \) by \(f(u_1u_2) = 30, f(u_2u_3) = 7, f(u_3u_4) = 3, f(u_2u_7) = 4, f(u_3u_5) = 20, f(u_3u_6) = 2 \) and \(f(u_8u_9) = 840 \).

The edge product function \(F \) of \(f \) is defined by \(F(u_1) = 30, F(u_2) = 840, F(u_3) = 840, F(u_4) = 3, F(u_5) = 20, F(u_6) = 2, F(u_7) = 4, F(u_8) = 840 \) and \(F(u_9) = 840 \).

Hence the given graph \(G \) is an edge product graph.

![Figure 3.1](image-url)

Definition 3.1.4.

Let \(G(V, E) \) be a graph. An edge \(e \in E \) bridge then the graph is denoted by \(G(e) \).
Definition 3.1.5.

For an edge product graph $G(V, E)$ there exists an edge function $f : E \rightarrow P$ such that an element $1 \in P$ then the graph G is called an unit edge product graph.

Theorem 3.1.6.

If the graph $(K_{(1,q)}(e))$ is an edge product graph with an edge $e \in E$ is a bridge and $f(e) = 1$. Then $(K_{(1,q)}(e))$ is an unit edge product graph.

Proof:

Let the graph $G(V, E) = (K_{(1,q)}(e))$ with $V = \{v_1, v_2, \ldots, v_{(q-1)}, v_q\}$ be the vertex set and $E = \{uv_1, uv_q\} \cup \{v_1v_i : 2 \leq i \leq (q-1)\}$ be the edge set. The set of all elements of $P = \{1, 2, \ldots, (q-1), (q-1)!\}$.

Consider the edge $e = uv_1$.

The edge product function $f : E \rightarrow P$ is defined by $f(uv_1) = 1$; $f(uv_q) = (q-1)!$.

$f(v_1v_i) = i$ for $2 \leq i \leq (q-1)$

The edge product function F of f is defined by $F(v_i) = i$ for $2 \leq i \leq (q-1)$ and $F(u) = F(v_1) = F(v_q) = (q-1)!$.

All the edges of G are incident on the vertex v_1 except the only one edge uv_q. Hence the value $f(uv_q) = (q-1)!$ can be obtained by multiplying either the functions $f(v_1v_2), f(v_1v_3), \ldots, f(v_1v_{(q-1)})$ or the functions $f(uv_1), f(v_1v_2), f(v_1v_3), \ldots, f(v_1v_{(q-1)})$.

Thus, in both the cases the corresponding edges are all incident on the vertex v.

Hence the graph $(K_{(1,q)}(e))$ is an unit edge product graph.
Example: Let \(G(V, E) \) be the given graph. Let \(V = \{ v_1, v_2, v_3, v_4, v_5, v_6 \} \) be the vertex set and \(E = \{ v_1v_2, v_1v_3, v_1v_4, v_1v_6, v_5v_6 \} \) be the edge set of the graph \(G \). Define the edge function \(f : E \rightarrow P \) by \(f(v_1v_2) = 2, f(v_1v_3) = 3, f(v_1v_4) = 4, f(v_1v_6) = 1 \) and \(f(v_5v_6) = 24 \). The edge product function \(F \) of \(f \) is defined by \(F(v_1) = 24, F(v_2) = 2, F(v_3) = 3, F(v_4) = 4, F(v_5) = 24 \) and \(F(v_6) = 24 \). Thus the graph \(G(V, E) = K_{1, 3}(e) \) is an unit edge product graph.
Note: In the above example, the element 1 is among the labels.

The following theorem gives a characterization for a unit edge product graph.

Theorem 3.1.7.

The graph G is an unit edge product graph then G is $K_{1,q}(e)$ for some $q \in \mathbb{N}$.

Proof:

Consider $G(V, E)$ is an edge product graph without isolated vertices. The mapping $f : E \rightarrow P$ is an edge function and F is its corresponding edge product function.

Then there exists an edge $e = uv$ such that $f(e) = 1$. If e_1 is any other edge, then $f(e_1) = f(e_1) \times f(e) \in P$.

Therefore, the edges e and e_1 are incident on a vertex and all other edges are adjacent to the edge e. Let w be any vertex other than the vertices u and v.

Then we have the edge product function $F(w) = F(w) \times f(e) \in P$.

If the vertices w_1, w_2, \ldots, w_r are adjacent to the vertex w then the edges ww_1, ww_2, \ldots, ww_r and e are adjacent on a vertex.

Hence, the vertex w is a pendent vertex which is adjacent to either u or v.

Suppose $\text{deg } u > 1$. Then the vertices u_1, u_2, \ldots, u_q are pendent vertices which are adjacent to vertex u other than v and the vertices v_1, v_2, \ldots, v_p are pendent vertices which are adjacent to vertex v other than u. Then we get $F(u) = f(uu_1) \times f(uu_2) \times \ldots \times f(uu_q) \times f(uv) \in P$. Let $F(u) = f(e_i)$ where $e_i = uu_i$, for some i. Then $F(u) = f(uu_i) = f(uu_1) \times f(uu_2) \times \ldots \times f(uu_q)$. That is, $f(uu_2) \times \ldots \times f(uu_q) = 1$. Hence $F(v) = F(v) \times$
f(uu_2) \times \ldots \times f(uu_q) \in P. Then we have the edge e is adjacent to all other edges of G and any vertex other than u and v as a pendent vertex adjacent to either u or v.

Thus, the graph G is $K_{(1, q)}(e)$ for some q.

Note: In all the other edge product graphs 1 is not among the edge labels. It is shown that the unit product of edge labels is also not possible in the edge product graphs which are non unit. If f is an edge function of a non unit edge product graph G, then $f(e_1) \times f(e_2) \times \ldots \times f(e_p)$ is not one for any sub collection \{e_1, e_2, \ldots , e_q\} of the edge set of the graph G.

3.2. Theorems related to non unit edge product graphs

In this section, we consider a graph $G(V, E)$ which is not an unit edge product graph. The following theorem proves that a connected edge product graph can have only one edge.

Theorem 3.2.1.

Let $G(V, E)$ be an edge product graph. Then K_2 is a component of G.

Proof:

Let $G(V, E)$ be an edge product graph. Let $f : E \rightarrow P$ be an edge function and F be an edge product function of f. Let p be the largest element in the set of positive integers P, the vertices $u, v, w \in V$ and the edge $e \in E$.

For the bijection $f : E \rightarrow P$, there exists an edge e joining the vertices u and v such that $f(e) = p$. To prove that both the vertices u and v are pendent vertices.

Suppose the vertex u is adjacent to a vertex w other than v.
Then \(F(u) \geq f(uv) \times f(uw) > f(uv) = p \) which is a contradiction to our hypothesis that the element \(p \) is the largest element in \(P \). Hence the vertex \(u \) is a pendant vertex. Similarly the vertex \(v \) is also a pendant vertex.

Therefore, the vertices \(u \) and \(v \) form a component of \(K_2 \) in \(G \).

Note: The graph \(K_2 \) is an edge product graph.

Theorem 3.2.2.

Let \(G \) is an edge product graph of the graph \(G(V, E) \); where \(f : E \to P \) the edge function and \(F \) the edge product function of \(f \) of the graph \(G \). Let \(u \in V \) be any vertex and \(e_1, e_2, \ldots, e_p \) for \(p > 1 \) be a collection of edges incident on \(u \). Let \(\ell_1, \ell_2, \ldots, \ell_q \), be another collection of edges, none of them incident on the vertex \(u \) such that \(f(e_1) \times f(e_2) \times \ldots \times f(e_p) = f(\ell_1) \times f(\ell_2) \times \ldots \times f(\ell_q) \). Let the edges \(\ell_1, \ell_2, \ldots, \ell_q \) are all incident on a vertex, say \(v \), with \(v \not= u \) such that \((\text{deg } u, \text{deg } v) \in \{(p,q), (p,q+1), (p+1,q), (p+1, q+1)\} \). Then, either the vertices \(u \) and \(v \) are adjacent and \((\text{deg } u, \text{deg } v) \not= (p, q) \) or the vertices \(u \) and \(v \) are non-adjacent and \((\text{deg } u, \text{deg } v) = (p, q) \).

Proof:

Let \(G \) is an edge product graph of the graph \(G(V, E) \); where \(f : E \to P \) the edge function and \(F \) is its corresponding edge product function of \(f \). Let \(e_1, e_2, \ldots, e_p \) be a collection of edges incident on a vertex \(u \) for \(p > 1 \). Then, there may arise two cases to \(\text{deg } u \).

Case (1) when \(\text{deg } u = p \)

Suppose the collection of edges \(e_1, e_2, \ldots, e_p \) are incident on the vertex \(u \). Then, \(f(\ell_1) \times f(\ell_2) \times \ldots \times f(\ell_q) = f(e_1) \times f(e_2) \times \ldots \times f(e_p) = F(u) \in P \)
Thus, the edges $\ell_1, \ell_2, \ldots, \ell_q$ are all incident on a vertex, say v. But no one of
the edge ℓ_i, ($i = 1, 2, \ldots, q$) is incident on the vertex u, $u \neq v$.

Let $\deg v = (q + k)$ and $\ell_1, \ell_2, \ldots, \ell_q, \ell_{(q+1)}, \ell_{(q+2)}, \ldots, \ell_{(q+k)}$ be the edges incident on v. Then we have

$$F(v) = f(\ell_1) \times f(\ell_2) \times \ldots \times f(\ell_q) \times f(\ell_{(q+1)}) \times f(\ell_{(q+2)}) \times \ldots \times f(\ell_{(q+k)}) \in \mathbb{P}$$

$$= f(e_1) \times f(e_2) \times \ldots \times f(e_p) \times f(\ell_{(q+1)}) \times f(\ell_{(q+2)}) \times \ldots \times f(\ell_{(q+k)}) \in \mathbb{P}$$

Hence, the edges $e_1, e_2, \ldots, e_p, \ell_{(q+1)}, \ell_{(q+2)}, \ldots, \ell_{(q+k)}$ are incident on a
vertex. But e_1, e_2, \ldots, e_p are incident on u and $\ell_{(p+1)}, \ell_{(p+2)}, \ldots, \ell_{(p+k)}$ are incident
on v and there can be at most one edge incident on both the vertices u and v.

Therefore, $k = 0$ or $k = 1$.

When $k = 0$, either u and v are not adjacent and $\deg u = p$, $\deg v = q$ or u and v are
adjacent with one $e_i = uv$ for $1 \leq i \leq p$ and $\deg u = p$, $\deg v = (q + 1)$. When $k = 1$, the
vertices u and v are adjacent with $uv = \ell_{(q+1)}$ and $\deg u = p$, $\deg v = (q + 1)$.

Case (2) when $\deg u > p$

Suppose $\deg u = (p + r)$ with $r > 0$.

Let $e_1, e_2, \ldots, e_p, e_{(p+1)}, e_{(p+2)}, \ldots, e_{(p+r)}$ be the edges incident on the vertex u.

Then $F(u) = f(e_1) \times f(e_2) \times \ldots \times f(e_p) \times f(e_{(p+1)}) \times f(e_{(p+2)}) \times \ldots \times f(e_{(p+r)}) \in \mathbb{P}$

$$= f(\ell_1) \times f(\ell_2) \times \ldots \times f(\ell_q) \times f(e_{(p+1)}) \times f(e_{(p+2)}) \times \ldots \times f(e_{(p+r)}) \in \mathbb{P}$$

Hence, the edges $\ell_1, \ell_2, \ldots, \ell_q, e_{(p+1)}, e_{(p+2)}, \ldots, e_{(p+r)}$ are all incident on a vertex, say
v. say. But the edges $\ell_1, \ell_2, \ldots, \ell_q$ are not incident on the vertex u and the edges $e_{(p+1)}, e_{(p+2)}, \ldots, e_{(p+r)}$ are incident on u. Thus, we have $v \neq u$.

There can be at most one edge incident on both the vertices u and v with $r = 0$ or $r = 1$.

We obtain that $r = 1$ but we assume that $r > 0$.

24
Therefore, the vertices u and v are adjacent with $e_i = uv$ for some i, $1 \leq i \leq (q + 1)$ (not necessarily $e_{(q + 1)}$) and $\deg u = (p+1)$ and $\deg v = (q+1)$.

Definition 3.2.3.

Let G be an edge product graph. Let $f : E \to P$ be an edge function and F be an edge product function of f. Let $v \in V$ be any vertex of G such that $F(v) \in P$. Let $\deg v$ be q and the vertices v_1, v_2, \ldots, v_q are adjacent to the vertex v. If we obtain a graph $G'(V', E')$ from the given graph G with vertex set $V' = [V - \{v\}] \cup \{v_1', v_2', \ldots, v_q'\}$ and the set $E' = [E - \{vv_1, vv_2, \ldots, vv_q\}] \cup \{v_1v_1', v_2v_2', \ldots, v_qv_q'\}$. The new graph G' which we obtain from the given graph G is known as flowering the vertex v. The following figure shows the process of flowering the vertex v.

![Figure 3.4](image-url)

Remark 3.2.4.

1. The edge sets E and E' have the same number of edges.
2. Define $f' : E' \rightarrow P$ by $f'(e) = f(e)$ for all $e \in E \cap E'$ and $f'(v_iv_i') = f(vv_i)$ for $1 \leq i \leq q$. Thus the mapping $f' : E' \rightarrow P$ is an edge function and $F'(u) = F(u)$ for all $u \in V \cap V'$, is its edge product function and $F'(v_i') \in P$ for $1 \leq i \leq q$, where $F(v) \in P$.

Theorem 3.2.5.

Let $G(V, E)$ be a connected graph and $G(V, E)$ be an edge product graph with an edge function $f : E \rightarrow P$ and the edge product function F. If the vertex v is the only one vertex such that $F(v) \in P$, then the vertex v is adjacent to a pendent vertex.

Proof:

Let $G(V, E)$ be a connected edge product graph where $V = \{v_1, v_2, \ldots, v_q\}$ the vertex set. The vertices $v_i, (i = 1, 2, \ldots, q)$ are all adjacent to a vertex v, then the degree of the vertex v is q. That is, $\deg v = q$. Now flowering the vertex v, we obtain a new graph $G' (V', E')$ where the vertex set $V' = [V - \{v\}] \cup \{v_1', v_2', \ldots, v_q'\}$ and the edge set $E' = [E - \{vv_1, vv_2, \ldots, vv_q\}] \cup \{v_1v_1', v_2v_2', \ldots, v_qv_q'\}$.

The mapping $f : E \rightarrow P$ is an edge function of the graph G, gives an edge function $f' : E \rightarrow P$ of the graph G' such that the edge product function F' satisfies $F'(u) = F(u)$ for all $u \in V \cap V'$. Hence the functions $F'(u) \in P$ for all $u \in V \cap V'$ and $F'(v_i') \in P$ for $1 \leq i \leq q$.

Therefore, the graph $G' (V', E')$ is an edge product graph and K_2 is a component of the graph G'. Since the given graph $G(V, E)$ is a connected graph, one of its edge v_iv_i' is a K_2 component of G'.

Thus the vertex v_i is a pendent vertex which is adjacent to v in G.
Theorem 3.2.6.

Let $G(V, E)$ be a connected graph and G has no pendent vertices. Let the mapping $f : E \to P$ be an edge function and F be the edge product function of f in G. For the vertices v_1, v_2, \ldots, v_q of G, $F(v_i) \in P$ for $1 \leq i \leq q$. Then the induced sub graph G with the vertex set $\{v_1, v_2, \ldots, v_q\}$ is not K_q.

Proof:

Consider a connected graph $G(V, E)$ which has no pendent vertices. The mapping $f : E \to P$ is an edge function and F is an edge product function of f in G. Then the graph G is an edge product graph.

Let v_1, v_2, \ldots, v_q be the vertices in G. Flowering the vertices in G, we obtain a new graph G', which is also an edge product graph. Since G is a connected graph, one of its edges is a K_2 component of G'. Also G has no pendent vertex; only the edge $v_i v_j$ will be a K_2 component of G'. Then the induced sub graph of G with the vertex set $\{v_1, v_2, \ldots, v_q\}$ has the edge $v_i v_j$ and is not K_q.

Corollary 3.2.7:

Let $G(V, E)$ be a connected graph and G has no pendent vertices. The mapping $f : E \to P$ is an edge function and F is the corresponding edge product function of G. There exists vertices u and v such that $F(u), F(v) \in P$, then the vertices are adjacent.

Corollary 3.2.8:

Let $G(V, E)$ be a connected graph. Let $f : E \to P$ be an edge function and F be its corresponding edge product function of G. Then there exist vertices v_1, v_2, \ldots, v_q of G
such that $F(v_i) \in P$ for $1 \leq i \leq q$. If any v_i for $1 \leq i \leq q$, is not adjacent to the pendent vertex, then the induced sub graph of G with vertex set $\{v_1, v_2, \ldots, v_q\}$ is not K_q.

Theorem 3.2.9:

Let G be an edge product graph with edge function $f: E \rightarrow P$ and its edge product function F. Let w be a non pendent vertex and $e = uv \in E$ be such that $F(w) = f(e)$. Then, either the induced sub graph of G with vertex set $\{u, v\}$ forms a K_2 component in G or the induced sub graph of G with vertex set $\{u, v, w\}$ is K_3 or P_2 with one of the vertex u, v as a pendent vertex in G.

Proof:

The given graph $G(V, E)$ is an edge product graph with $f : E \rightarrow P$ is an edge function and F is the edge product function of f. A collection of p vertices w_1, w_2, \ldots, w_p are all adjacent to a vertex w,

we have $f(e) = F(w) = f(\ell_1) \times f(\ell_2) \times \ldots \times f(\ell_p) \in P$, where $\ell_i = ww_i$ for $1 \leq i \leq p$.

Suppose the vertex u is not adjacent to w, but the vertex u is adjacent to the vertices u_1, u_2, \ldots, u_q other than the vertex v. Then we have

$F(u) = f(e_1) \times f(e_2) \times \ldots \times f(e_q) \times f(e), \text{ where } e_i = uu_i \text{ for } 1 \leq i \leq q$

$= f(e_1) \times f(e_2) \times \ldots \times f(e_q) \times f(\ell_1) \times f(\ell_2) \times \ldots \times f(\ell_p) \in P$

Therefore, the $(p + q)$ edges $e_1, e_2, \ldots, e_q, \ell_1, \ell_2, \ldots, \ell_p$ are all incident on a vertex. But the p edges e_1, e_2, \ldots, e_q are incident on u and the q edges $\ell_1, \ell_2, \ldots, \ell_p$ is incident on w. Since the vertices u and w are not adjacent, we get $q = 1$ and the vertex u is a pendent vertex.

Suppose the vertices u and v is not adjacent to the vertex w. Then u and v are pendent vertices which form a K_2 component in the graph G. If one of the vertex u and
v is adjacent to w and the other one vertex is not adjacent to w, then the second is a pendent vertex which forms P_2.

Suppose the vertices u and v are adjacent to w, then the induced subgraph with vertex set \{u, v, w\} is K_3.

Theorem 3.2.10.

Let G be an edge product graph. The mapping $f: E \rightarrow P$ is an edge function and F is an edge product function of f in G. Let a collection of edges $\ell_1, \ell_2, \ldots, \ell_p$ ($p > 1$) be incident on a vertex, say w. Let $ww_i = \ell_i$ for $1 \leq i \leq p$ and there exists an edge $e = uv$ be such that $f(\ell_1) \times f(\ell_2) \times \ldots \times f(\ell_p) = f(e)$. Then, either the induced subgraph of G with vertex set \{u, v\} forms a K_2 component in G or the induced subgraph of G with vertex set \{u, v, w\} is K_3 or P_2 or P_1 with one of the vertex u, v as a pendent vertex in G.

Proof:

Let us consider the given graph G be an edge product graph with edge function $f : E \rightarrow P$ and F be its corresponding edge product function. The proof follows from the following two cases.

Case (1) when vertex u is not adjacent to w

Suppose vertex u is adjacent to the vertices u_1, u_2, \ldots, u_q other than the vertex v. Then we have

\[
F(u) = f(e_1) \times f(e_2) \times \ldots \times f(e_q) \times f(e) \in P,
\]

where $e_i = uu_i$ for $1 \leq i \leq q$

\[
= f(e_1) \times f(e_2) \times \ldots \times f(e_q) \times f(\ell_1) \times f(\ell_2) \times \ldots \times f(\ell_p) \in P
\]

Therefore, the $(p + q)$ edges e_1, e_2, \ldots, e_q, $\ell_1, \ell_2, \ldots, \ell_p$ are all incident on a vertex. But the p edges e_1, e_2, \ldots, e_q are incident on the vertex u and the q edges $\ell_1, \ell_2, \ldots, \ell_p$
are incident on the vertex \(w \). Since we consider that the vertices \(u \) and \(w \) are not adjacent, then we get \(q = 1 \) and \(u \) is a pendent vertex.

Case (2) when the vertex \(u \) is adjacent to \(w \) and the edge \(uw \neq \ell_i \) for \(1 \leq i \leq p \)

Consider vertex \(u \) is adjacent to the vertices \(u_1, u_2, \ldots, u_q \) other than the vertices \(v \) and \(w \). Then we get the following function

\[
F(u) = f(e_1) \times f(e_2) \times \ldots \times f(e_q) \times f(e) \times f(ww) \in P \quad \text{where} \quad e_i = uu_i \quad \text{for} \quad 1 \leq i \leq q
\]

Thus, the \((p + q) \) edges \(e_1, e_2, \ldots, e_q, \ell_1, \ell_2, \ldots, \ell_p \) and the edge \(uw \) are incident on a vertex. But \(e_1, e_2, \ldots, e_q \) are incident on a vertex \(u \) and the edges \(\ell_1, \ell_2, \ldots, \ell_p \) are incident on \(w \).

Therefore, the only edge \(uw \) is incident on both \(u \) and \(w \). Then we have \(q = 1 \) and the vertex \(u \) is adjacent only to \(v \) and \(w \).

The next two cases are the vertex \(u \) is adjacent to \(w \) with an edge \(uw = \ell_i \) for some \(i, 1 \leq i \leq p \) and the vertex \(u \) coincides with \(w \).

Consider the vertices \(u \) and \(v \) are not adjacent to \(w \), then they form a \(K_2 \) component in \(G \). Suppose one of the vertex \(u \) or \(v \), say \(u \), is adjacent to \(w \) with an edge \(uw \neq \ell_i \) for \(1 \leq i \leq p \), then the \(\deg u = 2 \) and the vertex \(v \) is a pendent vertex. Then the induced sub graph with vertex set \(\{u, v, w\} \) form a path \(P_2 \).

Suppose vertex \(u \) is adjacent to \(w \) with an edge \(uw = \ell_i \) for some \(i \). But vertex \(v \) is not adjacent to \(w \), then the induced sub graph with vertex set \(\{u, v, w\} \) form a \(P_2 \) path with \(v \) as a pendent vertex in \(G \). If the vertices \(u \) and \(v \) are adjacent to \(w \) then the induced sub graph with vertex set \(\{u, v, w\} \) form \(K_3 \) (if \(uw \neq \ell_i \) for \(1 \leq i \leq p \), then \(\deg u = 2 \), otherwise \(\deg u \geq 2 \)).
Theorem 3.2.11.

Let G be an edge product graph with edge function $f : E \rightarrow P$ and edge product function F of f. Let the edges e_1, e_2, \ldots, e_p be incident on u and the edges $\ell_1, \ell_2, \ldots, \ell_q$ be incident on v. It there exist proper sub collections e_1, e_2, \ldots, e_r of e_1, e_2, \ldots, e_p and $\ell_1, \ell_2, \ldots, \ell_s$ of $\ell_1, \ell_2, \ldots, \ell_q$ such that $f(e_1) \times f(e_2) \times \ldots \times f(e_r) = f(\ell_1) \times f(\ell_2) \times \ldots \times f(\ell_s)$ then, the vertices u and v are adjacent and $r = (p - 1), s = (q - 1)$.

Proof:

Let $F(u) = f(e_1) \times f(e_2) \times \ldots \times f(e_r) \times f(e_{(r+1)}) \times f(e_{(r+2)}) \times \ldots \times f(e_p) \in P$

$$= f(\ell_1) \times f(\ell_2) \times \ldots \times f(\ell_s) \times f(e_{(r+1)}) \times f(e_{(r+2)}) \times \ldots \times f(e_p) \in P$$

where $r < p$. Therefore the edges $\ell_1, \ell_2, \ldots, \ell_s, e_{(r+1)}, e_{(r+2)}, \ldots, e_p$ are all incident on a vertex. But the s edges $\ell_1, \ell_2, \ldots, \ell_s$ are incident on v and the edges $e_{(r+1)}, e_{(r+2)}, \ldots, e_p$ are incident on u. Then we get $p = (r + 1)$ and $e_{(r+1)} = uv$.

That is, $r = (p - 1)$ and $e_{(r+1)} = uv$. Similarly, we get $s = (q - 1)$ and $\ell_{(s+1)} = uv$.

Therefore, we obtain that $r = (p - 1), s = (q - 1)$ and $\ell_q = e_p = uv$.

In the next chapter, we discuss more about Edge Product Number of Graphs.