LIST OF FIGURES

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER - I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 1.1</td>
<td>Ostwald - Miers solubility diagram</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER - II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Molecular structure of DAST</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>(a) Structure of the second order NLO active noncentrosymmetric phase,</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>(b) Orientation of the crystallographic a, b, and c and the dielectric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x₁, x₂, and x₃ axes in DAST (c) Facets and crystallographic axes of DAST</td>
<td></td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Synthesis scheme of DAST material</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Solubility histogram of DAST in different solvents</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>(a) Bulk DAST crystal grown by slow cooling method using methanol</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>(b) Hygroscopic free DAST crystals grown from allyl alcohol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Hydrated DAST crystals from methanol and (d) Hygroscopic DAST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>crystals grown by slow evaporation method using methanol as a solvent</td>
<td></td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Schematic diagram of crystal growth system</td>
<td>55</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>DAST crystals grown from modified two zone method</td>
<td>55</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>NMR spectrum of DAST</td>
<td>57</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Powder X-ray diffraction pattern of DAST</td>
<td>58</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>FTIR spectrum of DAST</td>
<td>60</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Transmittance spectrum of DAST</td>
<td>62</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Absorption spectrum of DAST</td>
<td>63</td>
</tr>
</tbody>
</table>
Figure 2.13 Frequency dependence of dielectric constant of DAST crystal grown from 66 methanol

Figure 2.14 Frequency dependence of dielectric constant of DAST crystal grown from 66 allyl alcohol

Figure 2.14 TG and DTA curve of DAST

Figure 2.15 DSC curve of the grown DAST

CHAPTER - III

Figure 3.1 Synthesis scheme of (a) DASNP and (b) HSNP materials

Figure 3.2 Solubility curves of (a) DAST, (b) DASNP and (c) HSNP

Figure 3.3 As grown (a) DASNP and (b) HSNP single crystals

Figure 3.4 Powder X-ray diffraction pattern of DASNP

Figure 3.5 Powder X-ray diffraction pattern of HSNP

Figure 3.6 HRXRD pattern of DASNP single crystal

Figure 3.7 HRXRD pattern of HSNP single crystal

Figure 3.8 FTIR spectrum of DASNP

Figure 3.9 FTIR spectrum of HSNP

Figure 3.10 Absorption spectrum of DASNP

Figure 3.11 Absorption spectrum of HSNP

Figure 3.12 Frequency dependence of dielectric constant of (a) DASNP and (b) HSNP 101 crystals

Figure 3.13 Frequency dependence of dielectric loss of (a) DASNP and (b) HSNP 102 crystals

Figure 3.14 TGA spectra of (a) DASNP and (b) HSNP 103

Figure 3.15 DSC spectra of (a) DASNP and (b) HSNP 104
CHAPTER - IV

Figure 4.1 Synthesis scheme of TEAP material 115
Figure 4.2 Solubility curve of TEAP in methanol 116
Figure 4.3 As grown TEAP single crystal 117
Figure 4.4 Powder X-ray diffraction pattern of TEAP 119
Figure 4.5 FTIR spectrum of TEAP 121
Figure 4.6 Laser Raman spectrum of TEAP 125
Figure 4.7 Absorption spectrum of TEAP 126
Figure 4.8 Transmittance spectrum of TEAP 127
Figure 4.9 Plot of energy versus (αhv)^2 for TEAP 128
Figure 4.10 Frequency dependence of dielectric constant of TEAP crystal 130
Figure 4.11 Frequency dependence of dielectric loss of TEAP crystal 130
Figure 4.12 TG and DTA spectra of TEAP 132

CHAPTER - V

Figure 5.1 As grown GZCTC single crystal 145
Figure 5.2 Powder X-ray diffraction pattern of GZCTC 146
Figure 5.3 FTIR spectrum of GZCTC 147
Figure 5.4 Absorption spectrum of GZCTC 149
Figure 5.5 Transmittance spectrum of GZCTC 150
Figure 5.6 Variation of microhardness and stiffness constant with load for GZCTC 151
Figure 5.7 Graph between log p versus log d of GZCTC crystal 151
Figure 5.8 Frequency dependence of dielectric constant of GZCTC crystal 153
Figure 5.9 Frequency dependence of dielectric loss of GZCTC crystal 153
Figure 5.10 As grown CMTC single crystals 156
Figure 5.11 Powder X-ray diffraction pattern of CMTC 158
Figure 5.12 HRXRD pattern of CMTC crystal 159
Figure 5.13 FTIR spectrum of CMTC 160
Figure 5.14 Transmittance spectrum of CMTC 161
Figure 5.15 Plot of Vickers hardness and stiffness constant versus load for CMTC 163
Figure 5.16 Plot of log p versus log d for CMTC crystal 163
Figure 5.17 Frequency dependence of dielectric constant of CMTC crystal 164
Figure 5.18 Frequency dependence of dielectric loss of CMTC crystal 164

CHAPTER - VI

Figure 6.1 Effect of applied voltage on the phase retardation 183
Figure 6.2 Electro-optic intensity modulator using EO element 185
Figure 6.3 Variation of optical transmittance with the applied voltage 185
Figure 6.4 Schematic diagram of DAST electro-optic modulator 187
Figure 6.5 Experimental arrangement used for the electro-optic measurement 187
Figure 6.6 Sine square waveform function 189
Figure 6.7 Half wave voltage plot for the DAST crystal 189