### CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td>Summary</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>viii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>Acronyms</td>
<td>xviii</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>xxi</td>
</tr>
<tr>
<td><strong>Chapter 1: Introduction</strong></td>
<td>1</td>
</tr>
<tr>
<td>1.1 Preface to the study</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Objective and area of study</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Significance of the study</td>
<td>11</td>
</tr>
<tr>
<td>1.4 Precipitation</td>
<td>12</td>
</tr>
<tr>
<td>1.4.1 Precipitation process</td>
<td>12</td>
</tr>
<tr>
<td>1.4.2 Types of precipitation</td>
<td>20</td>
</tr>
<tr>
<td>1.5 Basis of remote sensing</td>
<td>24</td>
</tr>
<tr>
<td>1.5.1 Nature of light &amp; electromagnetic radiation</td>
<td>24</td>
</tr>
<tr>
<td>1.5.2 Black body radiation and laws</td>
<td>26</td>
</tr>
<tr>
<td>1.5.3 Grey body radiation</td>
<td>31</td>
</tr>
<tr>
<td>1.5.4 Source of Electromagnetic Radiation for remote sensing</td>
<td>32</td>
</tr>
<tr>
<td>1.5.5 Propagation of Electromagnetic Radiations through atmosphere</td>
<td>33</td>
</tr>
<tr>
<td>1.6 Signatures of precipitation and clouds in remote sensing data</td>
<td>35</td>
</tr>
<tr>
<td>1.7 Physical basis of precipitation monitoring using satellites</td>
<td>36</td>
</tr>
<tr>
<td>1.7.1 Visible and Infra Red techniques</td>
<td>37</td>
</tr>
<tr>
<td>1.7.2 Microwave techniques</td>
<td>41</td>
</tr>
<tr>
<td>1.8 Conclusions</td>
<td>44</td>
</tr>
</tbody>
</table>
Chapter 2: Precipitation related data used in the study

2.1. Geostationary satellite data
   2.1.1 Kalpana satellite data
   2.1.2 Meteosat satellite data

2.2 Polar satellite data
   2.2.1 TRMM Satellite Instrumentation and Data
      2.2.1.1. TRMM Science objectives
      2.2.1.2. Instruments carried by the TRMM satellite
      2.2.1.3. PR profile
      2.2.1.4. TMI profile
   2.2.2. SSM/I data
   2.3. Standard Products
      2.3.1. GPROF (TMI-2A12) data
      2.3.2. TRMM-3B42 V6 products
      2.3.3. GPCP monthly products

2.4. Conventional data
   2.4.1. AWS rain gauge data
   2.4.2. DWR data

2.5. Model data

Chapter 3: Precipitation estimation using Infrared data

3.1. Introduction
   3.1.1. Limitations of the conventional methods
   3.1.2. Precipitation monitoring using satellite remote sensing
   3.1.3. Previous work by the researchers
3.1.4. Standard GPI technique for the precipitation monitoring 66
3.1.5. Development of modified GPI technique for the Indian tropics 67
3.2 Data used for the study 68
3.3 Precipitation from standard GPI technique 68
3.3.1. Methodology for the estimation 70
3.3.2. Results and discussions 72
3.3.2.1. Comparison with the TRMM-3B42 rainfall 72
3.3.2.2. Validation using Automatic Weather Station rain gauge data 76
3.3.2.3. Comparison with rainfall from Doppler Weather Radar (DWR) 77
3.3.2.4. Comparison with GPCP monthly rainfall 79
3.4 Development of proposed Modified GPI technique (MGPI) for precipitation estimation 80
3.4.1. Methodology for the estimation 81
3.4.2. Results and discussions 82
3.4.2.1. Comparison with the TRMM-3B42 rainfall 82
3.4.2.2. Validation using Automatic Weather Station rain gauge 87
3.4.2.3. Validation with Doppler Weather Radar (DWR) 88
3.5 Conclusions 90

Chapter 4: Precipitation retrieval using Microwave data 92
4.1 Introduction 93
4.1.1. Limitations of the IR based rainfall estimates 93
4.1.2. Use of microwaves in rainfall monitoring 94
4.1.3 Earlier Research in use of microwaves in precipitation monitoring 96
4.1.4. Indian efforts 98
4.1.5. Development of regional scattering index scheme for Indian tropics 99
4.2 Data used for the study 99
4.3 Methodology 100
4.4 Results and discussions 104
4.4.1 Comparison of present technique with Ferraro global scheme 104
4.4.2 Comparison with GPROF algorithm  
4.4.3 Validation with Automatic Weather Station rain gauge  
4.4.4 Validation with rainfall from Doppler Weather Radar (DWR)  
4.5 Conclusions

Chapter 5: Precipitation estimation using merged satellite microwave and infrared measurements

5.1 Introduction  
5.1.1 Limitations of IR and microwave measurements  
5.1.2 Merging of IR and microwave measurements  
5.2 Data used for the study  
5.3 Methodology for rain estimation (experiment using Meteosat data)  
5.4 Results and discussions  
5.4.1 Comparison with TRMM 3B42  
5.4.2 Comparison with GPCP  
5.4.3 Validation with Automatic Weather Station rain gauge  
5.4.4 Validation with rainfall from Doppler Weather Radar (DWR)  
5.4.5 Results using the Kalpana data  
5.5 Conclusions

Chapter 6: Final conclusions and proposed future prospects

6.1 Summary and conclusions of the present work  
6.2 Future prospects

References

Publication of the Author Related To Thesis Work