Table of Contents

LIST OF CHAPTERS
LIST OF FIGURES
LIST OF TABLES
LIST OF ABBREVIATIONS

CHAPTER 1
INTRODUCTION

1.1. Model organisms 2
1.2. *Drosophila* as a Model organism 3
1.3. Life cycle of *Drosophila* 3
1.4. Patterning 4
 1.4.1. Patterning within primary fields (Segmentation) 4
 1.4.2. Patterning within secondary fields (appendages) 8
1.5. Homeotic genes- Regulation and Function 10
 1.5.1. Regulation of Hox genes 14
 1.5.2. Function of Hox genes 15
1.6. Ultrabithorax and its function 15
1.7. Regulation of haltere identity by Ultrabithorax 17
1.8. Earlier work in the laboratory 18
1.9. Objectives of the present study 20

CHAPTER 2
MATERIALS AND METHODS

2.1. FLY GENETICS
 2.1.1. Fly Food Preparation 22
 2.1.2. Genetic Crosses 22
 2.1.3. Cuticle preparation 23
 2.1.4. Other Techniques in Fly Genetics 23
 2.1.4.1. Generation of transgenic flies 23
 2.1.4.2. FLP-FRT experiments 27
 2.1.4.3. Excision of P-element 27
 2.1.4.4. UAS-GAL4 Modulatory System 27
 2.1.4.5. Temporal control of GAL4 activity using GAL80^{ts} 28
 2.1.4.6. Flip Out Clones 28
 2.1.5. Imaginal Disc Staining 28
2.1.5.1. Larval Dissections 28
2.1.5.2. X-Gal staining 29
2.1.5.3. Immunohistochemistry 30
2.1.5.4. RNA in situ Hybridization 32

2.1.6. Microscopy 36

2.2. BIOCHEMICAL TECHNIQUES 36
2.2.1. Preparation of Ultra-Competent Cells 36
2.2.2. Polymerase Chain Reaction 37
2.2.3. Colony PCR 38
2.2.4. Slot Lysis Method “Cracking Method” 38
2.2.5. Cloning Strategies 39
2.2.6. Glycerol Stock 40
2.2.7. Collection of flies and Genomic DNA Isolation 40
2.2.8. RNA Isolation 41
2.2.9. RT-PCR 41
2.2.10. Raising Antibody 42
 2.2.10.1. Expression of pET21a - CG32062 42
 2.2.10.2. Purification of the overexpressed protein 44
 2.2.10.3. Injection of Protein 45
 2.2.10.4. Serum Collection 45
 2.2.10.5. Purification of the Antibody (Stripe Method) 46
2.2.11. SDS-PAGE Electrophoresis 46
 2.2.11.1. Silver Staining Protocol 46
 2.2.11.2. Transfer of Proteins 46
 2.2.11.3. Western Blotting 48
2.2.12. Immunoprecipitation 49

CHAPTER 3
ANALYSIS OF CG32062 EXPRESSION PATTERN

3.1. INTRODUCTION 52
 3.1.1. Enhancer Trap Approach and EN403-GAL4 52
 3.1.2. RNA Binding Proteins 53
 3.1.3. Poly (Q)-mediated Neurodegenerative Diseases 58
 3.1.4. Ataxin-2 and A2BP 62

3.2. RESULTS 64
 3.2.1. CG32062-Transcripts and Polypeptides 64
 3.2.2. CG32062 is the Drosophila homolog of A2BP1 group of proteins. 65
 3.2.3. Expression pattern of CG32062 65
 3.2.4. Comparison of expression patterns of CG32062 and EN403-lacZ 67

3.3. DISCUSSION 68
CHAPTER 4
LOSS OF FUNCTION STUDIES OF CG32062

4.1. INTRODUCTION
4.1.1. Generation of LOF Mutants-Excision of P element 71
4.1.2. RNAi Technique 72
4.1.3. Fly Wings 73
4.1.4. Development of Wings 74
4.1.5. Development of Veins and Intervene 75
4.1.6. Wing veins in Drosophila 76
4.1.7. Role of Specific Genes in Individual Vein and Intervein Development 78
4.1.8. Knot 79
4.1.9. CG32062 in wing development 81

4.2. RESULTS
4.2.1. Generation of Loss-of-function alleles 82
 4.2.1.1 EN403-P ELEMENT ON 2nd INTRON OF CG32062 82
 4.2.1.2. P{EPgy2}EY01049-P ELEMENT ON 1st INTRON 83
4.2.2. Generation of Knockdown Transgenic Line 83
4.2.3. Knockdown of CG32062 in Drosophila tissues 84
4.2.4. Rescue Experiments 87
4.2.5. FLP-out clones 88
4.2.6. CG32062 is upstream of Notch and EGFR pathways 88
4.2.7. Regulation of knot expression by CG32062RNAi 89

4.3. DISCUSSION

CHAPTER 5
GAIN OF FUNCTION STUDIES OF CG32062

5.1 INTRODUCTION
5.1.1. UAS-GAL4 Modulatory System 94
5.1.2. Advantages Of Ectopic Gene Expression In Drosophila 95
5.1.3. Wingless- A Morphogen And Wg Signaling Pathway 97
5.1.4. Gain-of-function studies of CG32062 98

5.2. RESULTS
5.2.1. Generation of UAS-CG32062 Transgenic line 99
5.2.2. Ectopic expression of CG32062 99
5.2.3. CG32062 Functions Upstream Of Notch Signaling Pathway 101
5.2.4. Rescue of putative loss-of-function alleles 101
5.2.5. Temporal regulation of mis-expression 102
5.2.6. Titration effect 102
5.2.7. Regulation of knot Expression 103

5.3. DISCUSSION 103
CHAPTER 6
ROLE OF CG32062 IN VEIN DEVELOPMENT AND WING PATTERNING

6.1. INTRODUCTION
6.2. MAJOR SIGNALING PATHWAYS
 6.2.1. Notch signaling
 6.2.2. Wg signaling
 6.2.3. EGFR signaling
 6.2.4. Hedgehog signaling
6.3. Interaction between signaling pathways
 6.3.1. Notch-EGFR signaling pathways
 6.3.2. Hh-Wg signaling pathway
 6.3.3. Wg-EGFR signaling pathway
 6.3.4. Wg, Dpp and EGFR signaling pathways
 6.3.5. Hh, Dpp and EGFR signaling pathways
6.4. RESULTS
 6.4.1. CG32062 in Hh signaling pathway
 6.4.2. Activation of CG32062 by Ci
 6.4.3. Genetic interaction between CG32062 and Ci
 6.4.4. Ci and CG32062 are part of a single protein complex
6.5. DISCUSSION

CHAPTER 7
CONCLUSION AND FUTURE DIRECTIONS

7.1. Role of CG32062 in other tissues
7.2. Role of CG32062 along the DV axis of the wing disc
7.3. Role of other isoforms of CG32062
7.4. Role of RNA-Binding Domain
7.5. Interaction of CG32062 and Ci in Knot regulation
7.6. Implications on Ubx-mediated repression of knot in haltere
7.7. CG32062 in SCA1/SCA2
LIST OF FIGURES

Chapter 1
Fig.1.1. Life Cycle of *Drosophila* 4
Fig.1.2. Patterning within the Primary axis 5
Fig.1.3. Patterning along the secondary axis-I 10
Fig.1.4. Patterning along the secondary axis-II 11
Fig.1.5. Homeotic Transformation 12*
Fig.1.6. Colinearity Principle 13
Fig.1.7. Ubx-mediated haltere specification 16

Chapter 3
Fig.3.1. Crystal Structure of RRM 54*
Fig.3.2. Schematic of CG32062 as shown by FlyBase 64
Fig.3.3. Schematic and protein sequence of the isoform CG32062-RE 64
Fig.3.4. Cartoon of CG32062 showing PolyQ and RBD domain 64
Fig.3.5. Induction of CG32062 protein in the bacterial system 65
Fig.3.6. Western Blotting using CG32062 antibody 66
Fig.3.7. Expression Pattern on different tissues of *Drosophila* 66
Fig.3.8. Expression Pattern on *Drosophila* wing imaginal disc 67
Fig.3.9. Comparison of CG32062 and EN403-lacz 68

Chapter 4
Fig.4.1. RNAi Mechanism 72*
Fig.4.2. Wing Morphology and venation pattern in Dipterans 73
Fig.4.3. Overview of wing development in *Drosophila* 75
Fig.4.4. Wing Pattern in *Drosophila*. 77*
Fig.4.5. Generation of Mitotic clones of R27.1 82
Fig.4.6. Schematic of RBD region used for generating CG32062 RNAi flies 84
Fig.4.7. Expression Pattern of Knockdown of CG32062 on *Drosophila* tissues 84
Fig.4.8. Adult Phenotypes on Knockdown of CG32062 -I 85
Fig.4.9. Adult Phenotypes on Knockdown of CG32062 -II 86
Fig.4.10. Loss of CG32062 does not lead to cell death 87
Fig.4.11. Loss of CG32062 leads to cell proliferation defects 87
Fig.4.12. Adult phenotypes of Flip-out clones of CG32062 88
Fig.4.13. Enhancement of LOF phenotypes in mutant background 88
Fig.4.14. Analysis of vein specific markers on loss of CG32062 89
Fig.4.15. Analysis of intervein specific markers on loss of CG32062 89
Fig.4.16. Regulation of knot expression by CG32062 (at reporter gene levels) 89
Fig.4.17. Regulation of knot expression by CG32062 (at RNA insitu levels) 89
Fig.4.18. CG32062 functions upstream of knot 90
Chapter 5
Fig.5.1. GAL4/UAS Modulatory System 95*
Fig.5.2. Wing patterning along the D/V axis and Schematic of Wg signaling 98*
Fig.5.3. Ectopic expression of CG32062 in SOPs of the wing disc 99
Fig.5.4. Misexpression of CG32062 along the D/V axis 99
Fig.5.5. CG32062 functions upstream of Notch Signaling Pathway 101
Fig.5.6. Temporal regulation of ectopic expression of CG32062 102
Fig.5.7. Ectopic expression of CG32062 by reducing the GAL4 activity 103
Fig.5.8. Up-regulation of knot expression on ectopic expression of CG32062 103

Chapter 6
Fig.6.1. Cell-cell signaling 106
Fig.6.2. Major Signaling pathways 107
Fig.6.3. Model I-Interaction between N and EGFR signaling to specify vein and intervein development in the wing imaginal disc 110
Fig.6.4. Model-II-Interaction of Hh, N, EGFR, Dpp signaling pathways to pattern the medial region of the wing. 112
Fig.6.5. CG32062 in Hh signaling pathway 113
Fig.6.6. Activation of CG32062 by Ci 114
Fig.6.7. Genetic interaction between CG32062 and Ci 114
Fig.6.8. CG32062 and Ci are part of the same protein complex 114

LIST OF TABLES
Table 4.1. Summary of Phenotypes induced by CG32062RNAi 86
Table 5.1. Summary of Phenotypes induced by overexpression of CG32062 100