CONTENTS

CHAPTER I

INTRODUCTION

1.1 Introduction 1

1.1.1 Biological Aspects of HIV/AIDS and Its Transmission 2

1.1.2 The Role and the Importance of Mathematical Models for AIDS 5

1.1.3 Different Modeling Approaches for Modeling the AIDS Epidemic in HIV-infected Individuals 7

1.1.3.1 Deterministic Models of the HIV Epidemic 8

1.1.3.2 Stochastic Models of the HIV Epidemic 8

1.1.3.3 Statistical Models of the HIV Epidemic 9

1.1.3.4 The State Space Model (Kalman Filter Model) 10

1.1.3.5 Curve fitting Method 11

1.2 Relevance of Current Study 12

1.3 Objective of the Study 13

CHAPTER II

LITERATURE REVIEW

2.1 Classification of Statistical Models 14

2.2 Supplementary review of models 23

2.2.1 Model of Gregson et al. (1996) 23

2.2.2 Model of Bongaarts (1989) 23

2.2.3 The model of Mariotto and Verdecchia (2000) 25

2.2.4 Works of Ian Timaeus (various years) 26

2.2.5 Available software for estimating/projecting HIV/AIDS 28

2.2.6 Criteria for making appropriate selection for estimating/projection HIV/ AIDS in India 31

2.3 Incubation Time period Distributions and its applications 31

2.3.1 The usefulness of understanding the incubation period 35
2.3.2 The earliest model developed using incomplete data 37
2.3.3 Classic right-skewed distribution 39
2.3.4 Lognormal distribution proposed by Philip Sartwell 40
2.3.5 Weibull Distribution 41
2.4.1 Application of statistical distributions to HIV incubation time data 43
2.4.2 Weibull and Gamma Models 43
2.4.3 Log-logistic and Log-normal models 46
2.4.4 Mixture and Staging Model 47
2.4.5 Change Point and Contact Models 48

CHAPTER III
MATERIALS AND METHODS
3.1 Back Calculation method 50
3.1.1 Distribution fitting method in the Incubation Time data of HIV 51
 3.1.1.0 Normality Test for Incubation Time data to find out whether it is parametric or non parametric 51
 3.1.1.0.1 Shapiro-Wilk test 52
 3.1.1.0.2 Anderson-Darling test 52
 3.1.1.0.3 Lilliefors test 52
 3.1.1.0.4 Jarque-Bera test 52
 3.1.1.0.5 P-P plots and Q-Q plots 52
 3.1.1.1 Parameters estimation method 53
 3.1.1.1.1 Moments 53
 3.1.1.1.2 Likelihood 53
 3.1.1.1.3 Goodness of fit test 54
 3.1.1.1.4 Chi-square goodness of fit test 54
3.1.1.2 Weibull Family Distribution 55
 3.1.1.2.1 Weibull 1 Distribution 55
 3.1.1.2.2 Weibull 2 Distribution 55
 3.1.1.2.3 Weibull 3 Distribution 56
 3.1.1.2.4 Gamma Distribution 56
 3.1.1.3 Log-normal Distribution 57
 3.1.1.4 Logistic Distribution 57
3.1.1.5 Fisher-Tippett Distribution

3.1.3.1 Total Cumulative number of AIDS cases \([A(t)]\) is the numerical value of the integral equation given below

3.1.3.2 For male

3.1.3.3 For Female

3.2 Curve Fitting Method

3.2.1 Linear Model

3.2.2 Logarithmic Model

3.2.3 Inverse Model

3.2.4 Quadratic Model

3.2.5 Cubic Model

3.2.6 Compound Model

3.2.7 Power Model

3.2.8 S-curve Model

3.2.9 Growth Model

3.2.10 Exponential Model

3.2.11 Logistic Model

CHAPTER IV

RESULTS

4.1 Fitting of parametric distributions in incubation time data

4.1.0 Normality Test

4.1.0.1 Total

4.1.0.2 Male

4.1.0.3 Female

4.1.1 Weibull 1 Distribution

4.1.1.1 Total

4.1.1.2 Male

4.1.1.3 Female

4.1.2 Weibull 2 Distribution

4.1.2.1 Total

4.1.2.2 Male

4.1.2.3 Female
4.1.3 Weibull 3 Distribution
 4.1.3.1 Total 102
 4.1.3.2 Male 106
 4.1.3.3 Female 106
4.1.4 Gamma (1) Distribution
 4.1.4.1 Total 114
 4.1.4.2 Male 118
 4.1.4.3 Female 118
4.1.5 Gamma (2) Distribution
 4.1.5.1 Total 126
 4.1.5.2 Male 130
 4.1.5.3 Female 130
4.1.6 Gamma (3) Distribution
 4.1.6.1 Total 138
 4.1.6.2 Male 142
 4.1.6.3 Female 142
4.1.7 Log-normal Distribution
 4.1.7.1 Total 150
 4.1.7.2 Male 154
 4.1.7.3 Female 154
4.1.8 Logistic Distribution
 4.1.8.1 Total 161
 4.1.8.2 Male 164
 4.1.8.3 Female 164
4.1.9 Fisher- Tippet (1) Distribution
 4.1.9.1 Total 172
 4.1.9.2 Male 176
 4.1.9.3 Female Fisher-Tippett (1) 176
4.1.10 Fisher- Tippet (2) Distribution
 4.1.10.1 Total 183
 4.1.10.2 Male Fisher- Tippett (2) 186
 4.1.10.3 Female 186
4.2 Back Calculation of Cumulative AIDS Cases
4.2.1 Total AIDS Cases 191
4.2.2 Male AIDS Cases 191
4.2.3 Female AIDS Case 192

4.3 Method 2: Statistical Modelling of HIV/AIDS using Curve fitting Method Forecasting of adult and children HIV cases of India 194

CHAPTER V
DISCUSSION
5.1 Major Challenges in the approaches used to estimate HIV/AIDS numbers 208
 5.1.1 Cohort studies 209
 5.1.2 Serial prevalence surveys 210
 5.1.3 Biomarkers in cross-sectional surveys 211
5.2 Limitations of the research 213

CHAPTER VI
CONCLUSION
6.1 Recommendations 215
6.2 Further work 216

REFERENCES

APPENDICES
 Article published in Indexed and Peer reviewed Scientific Journals
 Papers presented at conferences