CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>IX</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>XI</td>
</tr>
<tr>
<td></td>
<td>NOMENCLATURE</td>
<td>XIV</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>01</td>
</tr>
<tr>
<td>1.1</td>
<td>Exergoeconomic Methodologies</td>
<td>06</td>
</tr>
<tr>
<td>1.2</td>
<td>Organization of the Thesis</td>
<td>07</td>
</tr>
<tr>
<td>2</td>
<td>Review of Literature</td>
<td>09</td>
</tr>
<tr>
<td>2.1</td>
<td>Exergy Analysis of Thermal Systems</td>
<td>09</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Entropy Generation Minimization Method</td>
<td>10</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Exergy Destruction Method</td>
<td>19</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Comparison between EGM and EDM</td>
<td>37</td>
</tr>
<tr>
<td>2.2</td>
<td>Exergoeconomic Analysis</td>
<td>37</td>
</tr>
<tr>
<td>2.2.1</td>
<td>TEO Method</td>
<td>40</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Theory of Exergetic Cost</td>
<td>43</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Engineering Functional Analysis</td>
<td>44</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Thermoeconomic Functional analysis</td>
<td>45</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Structural Method</td>
<td>46</td>
</tr>
</tbody>
</table>
2.2.6 Evolutionary programming
2.2.7 EEA method
2.2.8 Exergetic Production Cost method
2.2.9 Graphical Method
2.2.10 Input-Output Method
2.3 Problem Formulation
2.4 Objectives of the Research

3 AAVAR System
3.1 System Description
3.1.1 Chilling Unit
3.1.2 Condensing Unit
3.2 Other Options of Heat Energy Sources
3.2.1 Heat from GT-HRSG Plant as Heat Source
3.2.2 Tapped Steam from Steam Power Plant as Heat Source
3.3 Steady State Online Data
3.3.1 Online Data for Brine Chilling Unit
3.3.2 Online Data for GT-HRSG
3.3.3 Online Data for Steam Power Plant

4 Exergoeconomic Optimization Methodology
4.1 Exergy Analysis
4.1.1 Exergy Destruction Method (EDM)
4.1.2 Entropy Generation Minimization Method (EGM) 77
4.2 Exergoeconomic Analysis 77
 4.2.1 Exergy Costing 78
 4.2.2 Economic Analysis 80
 4.2.3 Exergoeconomic Evaluation 83
4.3 Exergoeconomic Optimization 85
4.4 Unified Approach for Exergoeconomic Optimization 91

5 Exergoeconomic Optimization of Existing System 95
5.1 Exergy Analysis 95
 5.1.1 System Simulation 95
 5.1.2 EDM of Exergy Analysis 99
 5.1.3 EGM Method of Exergy Analysis 107
5.2 Exergoeconomic Analysis 111
 5.2.1 Levelized O&M Cost 112
 5.2.2 Fuel Cost 121
 5.2.3 Cost Flows 121
 5.2.4 Exergoeconomic Evaluation 125
5.3 Exergoeconomic Optimization 129
 5.3.1 Estimation of B_k, n_k and m_k 129
 5.3.2 Optimization Through Case by Case Iterative Procedure for AAVAR system 141
 5.3.3 Optimization through Iterative Procedure for Precoolers 1 and 2 146
 5.3.4 Results and Discussions 149
6 Exergoeconomic Optimization of Alternative Options

6.1 Steam Generated at HRSG as Heat Source
 6.1.1 System Simulation
 6.1.2 Exergy Analysis
 6.1.3 Exergoeconomic Analysis
 6.1.4 Exergoeconomic Evaluation
 6.1.5 Exergoeconomic Optimization

6.2 Tapped Steam as Heat Source
 6.2.1 System Simulation
 6.2.2 Exergy Analysis
 6.2.3 Exergoeconomic Analysis
 6.2.4 Exergoeconomic Evaluation
 6.2.5 Exergoeconomic Optimization

6.3 Comparison

7 Conclusions

References

Appendices
Appendix-A
Appendix-B
Appendix-C
Appendix-D
Appendix-E
Appendix-F