Acknowledgement

My deepest gratitude goes to my parents, Shri Rajanikant Shivabhai Ray and Smt. Daxaben Rajanikant Ray, for supporting me in whatever I do. My sister Priyanka Patel and her family, Dhara, Siya, Tejaskumar Patel, Japlaben Patel, Vinubhai Patel, and Manjuben Patel, for always giving their best to stay in touch and who make my breaks, from work, so enjoyable. I also thankful to my other family members Yogeshbhai Patel, Kanubhai Patel, Dipikaben Patel, Shrushti, Tinabhai, Belaben Patel, Jagdishbhai Patel, Navneetbhai Patel, Tarlikaben Patel, Riteshbhai Patel, Femiben Patel, Nayanbhai Patel, Krupa, Harshadbhai Patel, Hemuben Patel, Beena, Vandana, Krupa and sweet little Khushbu for giving me enormous support during my whole research work.

Successful accomplishment of any work needs proper method and right direction. This becomes accessible through proper guidance and supervision. Again, while accomplishing a difficult task is wide-ranging and sometimes unanticipated difficulties may arise which might make one to lose one’s courage and slacken one’s dedication. Under such a kind of circumstances a person not only giving guidance but also giving encouragement and moral support is required to be at hand. During the period of my work, I was in the midst of unexpected obscurity. Though, I never slacken my dedication and lose my courage when such a situation meets. It is only because of my Ph.D. guide, Dr. C.J. Panchal, who has extended me moral support at that hour of need. Thanks for supporting my research ideas, for giving me the leeway to do independent work, for letting me travel and present my work, and of, course, for teaching me.

My sincere thanks to Prof. A.N. Mishra (Dean, Faculty of Technology and Engineering), The M.S. University of Baroda, and Dr. D.R. Joshi (I/C-Head, Applied Physics Department) for their timely administrative and academic help since my Ph.D. registration under the department.

I express my sincere gratitude to Dr. M.S. Desai, for helping me into understanding the physics, and invaluable comments and suggestions for improving research methodology, research article and thesis writing. I would also like to thank Prof. V.N. Potbhare, Dr. N.D. Chavda, Dr. Bharti Rehani and Dr. P.K. Mehta for valuable suggestions with
enthusiastic environment during research work. Also I am very much thankful to my post-graduation faculty members, Prof. D. Laximnarayan, Mr. P.B. Patel, Dr. S.S. Patel, Dr. Urmesh Trivedi, Dr. R.R. Desai, Mr. A.B.Patil and lastly my school teachers Bhartiben Patel, Anjana Patel and Jayaben Patel.

I am also very much thankful to Mr. Arvind L. Patel (Director, The Sahjanand Laser Technology Ltd., Gujarat) for providing the laser scribing facility.

I am deeply indebted to my colleague Dr. Vipul Kheraj, Dr. Nitinkumar Shah, Dr. Keyur Patel, Gopal Bhatt, and Palak Patel, who were and are with me, with a true moral support at difficult times and making me pass through difficult situations with great ease during many stages of my research work. Also they are responsible for creating me the optimism and carry out this work with great ease and precision with technical advices.

Without the full support of my boosters, Kaushik Raval, Smit Shah, Rahul Trivedi, Jigar Shah, and Nishant Shah, I do not believe I would have finished this journey as sanely or with the degree of confidence I currently feel. They supported me by all means, as teachers, as friends and as philosophers, and made it unforgettable by their goodwill. Lastly, Bring in the angels from the havens Chiku, Darpita Patel, Kavita Chigare, Hemali Tanna and Anshumala Singh.

I express my warmest thanks to all my hostel friends, Mayur Patel, Rajesh SV, Hemant Mande, Harishbhai Talele, Salimbhai, Vrushabh, Anoop Markande, Ashok Vishwakarma, Sanjay Verma, Ekbaal, Vinod Bhoi, Parimal Patel, KB, Manish Jaiswal, Naveen Agrawal,
Washimbhai, Navin Bunekar, Mothuku Shyam Sundar, Murlibhai Sharaff, Subbramanyam, Dushyant Reddy and Lakshminarayan Balappagol.

I would like to thanks to all my friends, with whom I travel most in the earlier stage of my Ph.D., Sohil Darji, Bhavesh Patel, Alpesh patel, Munnabhai, Kalpesh Patel, Rajesh, Chintan, Shambhukaka, Maheshbhai Patel, Kashyapbhai Patel, and Nishant.

I am very much graceful to the departmental members Raffic A. Dudhwala, Yogesh Power, Nilesh Rathwa, P.B. More, and Bhavesh Patel for helping me a lot in the technical and non-technical issues of my Ph.D. work.

I am very much thankful to Jalaram trust, Vadodara, and University grant commissions (UGC) for providing the financial support during my post graduation study and Ph.D., respectively.

I also thankful to Prof. Marc Burgelman, Pennsylvania State University, for providing the software package AMPS-1D.

Ray Jayminkumar Rajanikant
Abstract

The generation of electrical current from the solar radiation is known as the photovoltaic effect. Solar cell, also known as photovoltaic (PV) cell, is a device that works on the principle of photovoltaic effect, and is widely used for the generation of electricity. Thin film polycrystalline solar cells based on copper indium gallium diselenide (CIGS) are admirable candidates for clean energy production with competitive prices in the near future. CIGS based polycrystalline thin film solar cells with efficiencies of 20.3% and excellent temperature stability have already been reported at the laboratory level. The present study discusses about the fabrication of CIGS solar cell. Before the fabrication part of CIGS solar cell, a numerical simulation is carried out using One-Dimensional Analysis of Microelectronic and Photonic Structures (AMPS-1D) for understanding the physics of a solar cell device, so that an optimal structure is analyzed.

In the fabrication part of CIGS solar cell, Molybdenum (Mo) thin film, which acts as a ‘low’ resistance metallic back contact, is deposited by RF magnetron sputtering on organically cleaned soda lime glass substrate. The major advantages for using Mo are high temperature, (greater than 600 °C), stability and inertness to CIGS layer (i.e., no diffusion of CIGS into Mo). Mo thin film is deposited at room temperature (RT) by varying the RF power and the working pressure. The Mo thin films deposited with 100 W RF power and 1 mTorr working pressure show a reflectivity of above average 50% and the low sheet resistance of about 1 Ω/.

The p-type CIGS layer is deposited on Mo. Before making thin films of CIGS, a powder of CIGS material is synthesized using melt-quenching method. Thin films of CIGS are prepared by a single-stage flash evaporation process on glass substrates, initially, for optimization of deposition parameters and than on Mo coated glass substrates for device fabrication. CIGS thin film is deposited at 250 °C at a pressure of 10⁻⁵ mbar. The thickness of the film was kept 1 μm for the solar cell device preparation. Rapid Thermal Annealing (RTA) is carried out of CIGS thin film at 500 °C for 2 minutes in the argon atmosphere. Annealing process mainly improves the grain growth of the CIGS and, hence the surface roughness, which is essential for a multilayered semiconductor structure.
Thin layer of n-type highly resistive cadmium sulphide (CdS), generally known as a “buffer” layer, is deposited on CIGS layer by thermal and flash evaporation method at the substrate temperature of 100 °C. The CdS thin film plays a crucial role in the formation of the p-n junction and thus the solar cell device performance. The effect of CdS film substrate temperature ranging from 50 °C to 200 °C is observed. At the 100 °C substrate temperature, CdS thin film shows the near to 85 % of transmission in the visible region and resistivity of the order of greater then $20 \times 10^9 \Omega \text{cm}$, which are the essential characteristics of buffer layer.

The bi-layer structure of ZnO, containing 70 nm i-ZnO and 500 nm aluminum (Al) doped ZnO, act as a transparent front-contact for CIGS thin film solar cell. These layers were deposited using RF magnetron sputtering. i-ZnO thin film acts as an insulating layer, which prevents the recombination of the photo-generated carries and also minimizes the lattice miss match defects between CdS and Al-ZnO. The resistivity of i-ZnO and Al-ZnO is of the order of $10^{12} \Omega \text{cm}$ and $10^{-4} \Omega \text{cm}$, respectively. Al-ZnO thin films act as transparent conducting top electrode having transparency of about 85 % in the visible region. On Al-ZnO layer the finger-type grid pattern of silver (Ag), 200 nm thick, is deposited for the collection of photo-generated carriers.

The thin film based multilayered structure Mo / CIGS / CdS / i-ZnO / Al-ZnO / Ag grid of CIGS solar cell is grown one by one on a single glass substrate. As-prepared CIGS solar cell device shows a minute photovoltaic effect. For the further improvement of the cell we have varied the thickness of the buffer layer i.e. CdS. In addition, the deposition of CdS is carried out using flash evaporation method to improve the CIGS/CdS junction. Heat soak pulses of about 200 °C are also applied for 20 sec for the further upgrading the junction. To protect the CIGS/CdS junction from the high-energy sputtered particles of ZnO, a fine mesh of stainless steel is placed just before the sample holder to enhance the performance of the solar cell. The influence of the thickness of i-ZnO and CdS has been checked. The maximum V_{oc} and J_{sc} of about 138 mV and 1.3 mA/cm², respectively, are achieved using flash evaporated CIGS layer and flash evaporated CdS thin film. Further improvement of current performance can be done either by adopting some other fabrication method to obtain a denser CIGS absorber layer or replacing the CdS layer with some other efficient buffer layer.