CONTENTS

Summary i-vii

CHAPTER I

INTRODUCTION AND SCOPE OF THE PRESENT WORK

I.1 Composite 1
I.2 Classification of composite materials 3
 I.2.1 Composite classified on the basis of geometry of the reinforcement 4
 I.2.1.a Particulate composites 4
 I.2.1.b Fiber composites 5
 I.2.2 Composite classified on the basis of matrix 5
 I.2.2.a Polymer Matrix Composites (PMCs) 5
 I.2.2.b Metal Matrix Composites (MMCs) 6
 I.2.2.c Ceramic Matrix Composites (CMCs) 7
 I.2.2.d Carbon-Carbon Composites (CCCs) 7
 I.2.3 Application of PMC composite materials 8
I.3 Fly ash 9
 I.3.1 Fly Ash Sources 9
 I.3.2 Morphology of Fly Ash 13
 I.3.3 Utilization of fly ash in various fields 14
 I.3.4 Classification of Fly Ash 18
 I.3.5 Ash Content in Indian Coal 19
 I.3.6 Physical Properties of Fly Ash 20
 I.3.7 Advantages of Fly Ash 20
 I.3.8 Disadvantages of Fly Ash 20
I.4 Introduction to Cenospheres 21
 I.4.1 General properties of cenosphere 22
 I.4.2 Cenospheres as High Performance Filler 23
I.5 Reinforcement 25
 I.5.1 Type of fibrous reinforcements 26
 I.5.2 Glass fibers 26
CHAPTER II

EXPERIMENTAL AND CHARACTERIZATION TECHNIQUES

II.1 Introduction 49
II.2 Ingredients used 49
 II.2.1 Epoxy resin 49
 II.2.2 Fly ash 50
 II.2.3 Cenosphere 50
 II.2.4 Glass fabric 50
II.3 Experimental 52
 II.3.1 Separation of cenosphere from fly ash 52
 II.3.2 Preparation of composites 52
 II.3.2.a Casting method 53
 II.3.2.b Hand lay-up technique 54
II.4 Characterization methods for raw materials 56
 II.4.1 Physico-chemical properties of fly ash 56
 II.4.1.a Moisture content of fly ash 56
 II.4.1.b Specific gravity of fly ash 56
 II.4.1.c Specific surface area of fly ash 57
 II.4.1.d pH of fly ash 58
II.4.1.e Conductivity of fly ash 58
II.4.1.f Loss on ignition (LOI) 58
II.4.1.g Particle size distribution by sieve analysis 59
II.4.1.h Particle size analysis by laser diffraction 59
II.4.1.i Cenosphere density measure by cylinder (with tapping) 60
II.4.1.j Cenosphere density measure cylinder (without tapping) 60
II.4.1.k Cenosphere density measure by the Float – sink method 61
II.4.1.l FTIR analysis 62
II.4.1.m X-ray diffraction analysis 63
II.4.1.n Chemical composition of fly ash 64
II.4.1.o Determination of SiO₂ 64
II.4.1.p Determination of Al₂O₃ 65
II.4.1.q Determination of CaO 66
II.4.1.r Determination of MgO 66
II.4.1.s Determination of Fe₂O₃ 67

II.5 Characterization methods for composites 67
II.5.1 Density measurements of composites 67
II.5.2 Determination of the porosity of composites 68
II.5.3 Fiber volume content of composites 69
II.5.4 Thermal gravimetric analysis 70
II.5.5 Differential scanning calorimetric (DSC) analysis 71
II.5.6 Micro structural properties 71
 II.5.6.a Optical microscopy 72
 II.5.6.b Scanning electron microscopy (SEM) 72
II.5.7 Mechanical properties 74
 II.5.7.a Flexural testing 74
 II.5.7.b Compressive strength 75
 II.5.7.c Rockwell hardness 76
II.5.8 Tribological evaluation 77
 II.5.8.a Principle of pin-on-disk measurements 78
 II.5.8.b Test procedure and conditions 78

II.6 Bibliography 80
CHAPTER III

CHARACTERIZATION OF FLY ASH AND CENOSPHERE

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.1</td>
<td>Physico–Chemical properties</td>
<td>81</td>
</tr>
<tr>
<td>III.1.a</td>
<td>pH and Conductivity</td>
<td>81</td>
</tr>
<tr>
<td>III.1.b</td>
<td>Specific gravity of fly ash</td>
<td>82</td>
</tr>
<tr>
<td>III.1.c</td>
<td>Chemical composition of FA and FAC</td>
<td>83</td>
</tr>
<tr>
<td>III.1.d</td>
<td>Loss of ignition (LOI) [Carbon content]</td>
<td>84</td>
</tr>
<tr>
<td>III.1.e</td>
<td>Blain’s surface area of FA and FAC</td>
<td>85</td>
</tr>
<tr>
<td>III.1.f</td>
<td>XRD of Fly ash</td>
<td>86</td>
</tr>
<tr>
<td>III.2</td>
<td>Separation of cenosphere from fly ash (Wet process)</td>
<td>87</td>
</tr>
<tr>
<td>III.3</td>
<td>Analysis of Cenosphere preceded from Vanakbori</td>
<td>89</td>
</tr>
<tr>
<td>III.3.a</td>
<td>Particle size distribution</td>
<td>89</td>
</tr>
<tr>
<td>III.3.a1</td>
<td>Particle size distribution by sieve analysis</td>
<td>89</td>
</tr>
<tr>
<td>III.3.a2</td>
<td>Particle size analysis by leaser diffraction</td>
<td>90</td>
</tr>
<tr>
<td>III.3.b</td>
<td>Density of Cenosphere</td>
<td>91</td>
</tr>
<tr>
<td>III.3.b1</td>
<td>Density by cylinder (with tapping) Packing density</td>
<td>92</td>
</tr>
<tr>
<td>III.3.b2</td>
<td>Density by cylinder (without tapping)</td>
<td>92</td>
</tr>
<tr>
<td>III.3.b3</td>
<td>Density measure by the Float – sink method</td>
<td>92</td>
</tr>
<tr>
<td>III.3.c</td>
<td>Moisture content</td>
<td>95</td>
</tr>
<tr>
<td>III.3.d</td>
<td>SEM of cenosphere</td>
<td>95</td>
</tr>
<tr>
<td>III.3.e</td>
<td>EDAX of different cenosphere</td>
<td>97</td>
</tr>
<tr>
<td>III.3.f</td>
<td>Thermal properties of cenosphere</td>
<td>100</td>
</tr>
</tbody>
</table>
CHAPTER IV

EPOXY FLY ASH AND EPOXY CENOSPHERE PARTICULATE COMPOSITES

PART – A

EPOXY FLY ASH PARTICULATE COMPOSITES

IV.A1 Density of Epoxy-Fly ash composite
IV.A2 Rockwell Hardness of Epoxy-Fly ash composite
IV.A3 Compressive strength of E-F composite
IV.A4 Friction coefficient of composites
IV.A5 Worn surface of Epoxy-Fly ash composite
IV.A6 Scanning electron microscopy (SEM)

PART - B

EPOXY CENOSPHERE COMPOSITES

IV.B1 Density of Epoxy-Cenosphere composite
IV.B2 Rockwell Hardness of Epoxy-Cenosphere composite
IV.B3 Compressive strength of E-C composite
IV.B4 Scanning electron microscopy (SEM)
IV.C Bibliography
CHAPTER V
GLASS – FIBER epoxy CENOSPHERE COMPOSITE

V.1 Physical properties of GFEC composites 122
V.1.a Density and Porosity 122
V.2 Rockwell Hardness 125
V.3 Compression strength of GEFC composite 126
V.4 Flexural strength of GFEC composites 128
V.5 Impact test 131

CHAPTER VI
CONCLUSION

LIST OF PUBLICATIONS