TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>MILK CONSUMPTION AND COMPOSITION</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>COMPONENTS IN MILK AND THEIR HEALTH EFFECTS</td>
<td></td>
</tr>
<tr>
<td>1.2.1</td>
<td>Protein</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Branched chain amino acids and other amino acids</td>
<td></td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>Taurine</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Glutathione (GSH)</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Lipids</td>
<td></td>
</tr>
<tr>
<td>1.2.3.1</td>
<td>Fatty acids</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3.2</td>
<td>Saturated fatty acids</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3.3</td>
<td>Unsaturated fatty acids</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3.4</td>
<td>Trans vaccenic acid (VA)</td>
<td>5</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Phospholipids and glycosphingolipids</td>
<td>5</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Minerals, vitamins and antioxidants</td>
<td></td>
</tr>
<tr>
<td>1.2.5.1</td>
<td>Calcium in milk</td>
<td>6</td>
</tr>
<tr>
<td>1.2.5.2</td>
<td>Selenium in milk</td>
<td>6</td>
</tr>
</tbody>
</table>
1.2.5.3 Iodine in milk
1.2.5.4 Magnesium in milk
1.2.5.5 Zinc in milk
1.2.5.6 Vitamin E in milk
1.2.5.7 Vitamin A in milk
1.2.5.8 Folate in milk
1.2.5.9 Riboflavin in milk
1.3.5.10 Vitamin B12 in milk

1.4 BACTERIAL FLORA OF MILK

1.5 INTOLERANCE TO MILK COMPONENTS

1.6 INTOLERANCE TO MILK PROTEINS

1.7 PHYSIOLOGICALLY ACTIVE MILK PEPTIDES

1.7.1 Antihypertensive Peptides (ACE Inhibitors)
1.7.2 Antithrombotic Peptides
1.7.3 Caseinophosphopeptides (CPP)
1.7.4 Immunomodulatory Peptides
1.7.5 Opioid Milk Peptides
1.7.6 Miscellaneous Peptides

1.8 Global Probiotic food market in industrialized nations
1.9 Indian probiotic market

1.10 Current players in Indian Probiotic Market
 1.10.1 Yakult danone
 1.10.2 Amul
 1.10.3 Nestle
 1.10.4 Mother Dairy

1.11 Fermented milk

1.12 Motivation and Problem statement

2 REVIEW OF LITERATURE

2.1 Milk and milk-derived products

2.2 Bioactive peptides
 2.2.1 Definition
 2.2.2 Mechanisms of production of bioactive peptides
 2.2.3 Mechanisms of action of bioactive peptides
 2.2.4 Bioactive peptide based commercial dairy products

2.3 Digestion of bioactive peptides

2.4 Bioactive peptide absorption
 2.4.1 Physiology of the digestion of proteins and peptides
 2.4.2 Physical and chemical characteristics of potentially absorbable bioactive peptides
2.5 Bioactivities of milk and fermented milk peptides

2.5.1 ACE-inhibition

2.5.2 Immunomodulation

2.5.2.1 Immunomodulatory peptides from milk

2.5.2.2 Microorganisms for the production of fermented milk with immunomodulatory activity

2.5.2.3 Two examples of immunomodulatory Peptides derived from milk proteins

2.3.2.4.1 YGG peptide

2.3.2.4.2 β-CN (193-209) peptide

2.6 Prebiotics and Probiotics

2.7 Fermentations and microorganisms

2.8 Probiotics and their role in the human health

2.8.1 GI tract and its Pathogens

2.8.1.1 Salmonella infection in human

2.8.1.2 Salmonella enterica serotype enteritidis

2.8.2 Therapeutic effects of probiotics

2.8.2.1 Acute gastroenteritis

2.8.2.2 Inflammatory bowel disease
2.9 Allergic diseases 50

2.10 Lactic acid bacteria and the immune system 50

2.10.1 Role of cytokines in the immune response 51

2.11 Interactions between epithelial cells and intestinal microflora 51

2.12 Casein Phosphopeptide and its uses 52

2.13 Anti-genotoxic role

2.13.1 Classification of radioprotective agent 55

2.13.2 Milk and fermented milk as an anti-genotoxic agent 55

2.13.3 Enzymes and their anti-genotoxic mechanism 57

3 OBJECTIVES 58

4 MATERIALS AND METHODS

4.1 Selection of milk brands and culture sources 59

4.1.1 Production of fermented milk using different sources of bacterial cultures 59

4.1.2 Initial Standardization 59

4.1.2.1 pH 60

4.1.2.2 Titratable acidity 60

4.1.2.3 Viscosity 60

4.1.3 Microbiological analysis of fermented milk 60

xiii
4.1.4 Isolation of CPP from fermented milk

4.1.5 Characterisation of four isolated CPPs

4.1.5.1 Antimicrobial activity of CPP

4.1.5.2 HPLC Analysis of CPP

4.1.5.3 FTIR Analysis of CPP

4.1.5.4 Molecular weight determination by SDS PAGE

4.2 Animal studies

4.2.1 Effect of CPP on weight loss and mortality rate in mice challenged with GUT Pathogens

4.2.1.1 Acclimatization of animals

4.2.1.2 Feeding with CPP

4.2.1.3 Challenging with GI Tract Pathogens

4.2.1.4 Pathogen count determination in visceral organs

4.2.1.5 Histopathological studies

4.2.2 Immunomodulatory role

4.3 Anti-genotoxic studies using CPP

4.3.1 Gamma irradiation Experiment with Animals

4.3.1.1 Experimental set up for mice

4.3.1.2 Experimental set up for fish
4.3.1.3 Irradiation with Co$_{60}$ source

4.3.2 Micronucleus assay

4.3.3 Enzymatic assays

4.3.3.1 Oxidase test

4.3.3.2 Catalase test

5 RESULTS

5.1 Isolation and characterization

5.1.1 Initial Standardization

5.1.1.1 pH

5.1.1.2 Titratable acidity

5.1.1.3 Viscosity

5.1.2 Microbiological analysis of fermented milk

5.1.3 Yield and production cost of CPP

5.1.4 Antimicrobial activity of CPP

5.1.5 HPLC Analysis of CPP

5.1.6 FTIR Analysis of CPP

5.1.7 Molecular weight determination by SDS PAGE

5.2 Animal Studies

5.2.1 Challenging with GI Tract Pathogens
5.2.2 Post infection studies

5.2.3 Determination of pathogen count in visceral organs

5.2.4 Histopathological studies

5.3 Determination of Immunomodulatory activity

5.4 Anti-genotoxic role of CPP

5.4.1 Micronucleus assay

5.4.2 Enzymatic assays

5.4.2.1 Oxidase enzyme test

5.4.2.2 Catalase enzyme test

6 DISCUSSION

6.1 General consideration

6.2 Initial standardization

6.3 Microbiological and SEM analysis

6.4 Anti-microbial activity

6.5 HPLC and FTIR analysis of CPP

6.6 Molecular weight determination by SDS-PAGE

6.7 Animal studies

6.7.1 Gastroprotective action against *E. coli*

6.7.2 Gastroprotective action against *Salmonella sp.*
6.7.3 Gastroprotective action against *Shigella sp.*

6.8 Pathogen count determination 174

6.9 Histopathological studies 176

6.10 Immunomodulatory activity 176

6.11 Anti-genotoxic role of CPP 178

6.12 Application to human model 179

7 CONCLUSION 180

8 FUTURE PROSPECTS OF OUR WORK

8.1 Current status of probiotics in India 183

8.2 Factors favoring Indian probiotic market and its players 184

8.3 Challenges to be considered 186

9 LIST OF REFERENCES 187

10 LIST OF PUBLICATIONS 216

11 PATENT FILED 217