LIST OF FIGURES

Fig. 2.1 Bathymetry and geomorphological features of the Gulf of Kachchh (depth contours are in metres); M1, M2 and M3 are current meter mooring locations and ACE1, CE2 and ACE3 are eddy locations. 12

Fig. 4.1 Recording current meter (RCM) and water level recorder (WLR) mooring locations and conductivity, temperature, depth (CTD) profiler stations. 23

Fig. 4.1.1a. Time series (discrete) temperature and salinity during winter season off Mundra. 24

Fig. 4.1.1b. Time series (discrete) temperature and salinity variation during winter period off Mithapur. 25

Fig. 4.1.1c. Time series (discrete) temperature and salinity variation during March (1994) off Vadinar. 26

Fig. 4.1.1d. Time series (discrete) temperature and salinity variation during winter to summer transition off Posatra. 27

Fig. 4.1.2 Vertical profiles of temperature (top) and salinity (bottom) in the western Gulf (ST. No.1-7), dotted lines indicate the deepest station. 28

Fig. 4.1.3 Vertical profiles of temperature (top) and salinity (bottom) in the western Gulf (ST. No. 8-17), dotted lines indicate the deepest stations. 29

Fig. 4.1.4 Vertical profiles of temperature (top) and salinity (bottom) in the central Gulf (ST. No. 16-25), dotted lines indicate the deepest station. 30

Fig. 4.1.6 Vertical profiles of temperature (top) and salinity (bottom) in the eastern Gulf (ST. No. 35-42), dotted lines indicate the deepest station. 32

Fig. 4.1.8 Salinity (PSU) at the surface layer in the Gulf of Kachchh. 34

Fig. 4.1.9 Density (Sigma-t) distribution at the surface layer. 35

Fig. 4.1.10 Vertical distribution of temperature (Deg C) along an east-west transect in the Gulf of Kachchh. 36

Fig. 4.1.11 Vertical distribution of salinity (PSU) along an east-west transect in the Gulf of Kachchh. 37

Fig. 4.1.12 Vertical distribution of density (sigma-t) (kg m-3) along an east-west transect in the Gulf of Kachchh. 38

Fig. 4.1.13 T-S plot of Gulf of Kachchh waters during November 2002 overlaid on isopycnal (sigma-t) contours (kg.m -3). Dotted line indicate 25.5 sigma-t. 39

Fig. 4.1.14 Time series measurement of (a) temperature (b) salinity and (c) water level off Mundra (13-14 Nov 2002) over two tidal cycles. 40

Fig. 4.2.1a Wind speed at four locations in the Gulf of Kachchh during April 2002. 41

Fig. 4.2.1b Wind direction at four locations in the Gulf of Kachchh during April 2002. 42

Fig. 4.2.1c Wind rose diagrams representing the consistency of wind direction at four locations in the Gulf of Kachchh during April 2002. 43

Fig. 4.2.2a. Air temperature (Deg C) measured at the four coastal stations: Jakhau, Okha, Vadinar and Navlakhi during 8 Nov to 12 Dec, 2002. 44

Fig. 4.2.2b. Wind speed (ms-1) measured at the four coastal stations: Jakhau, Okha, Vadinar and Navlakhi during 8 Nov to 12 Dec, 2002. 45

Fig. 4.2.2c. Wind Direction(Deg) measured at four coastal stations: Jakhau, Okha, Vadinar and Navlakhi during 8 Nov to 12 Dec, 2002. 46

Fig. 4.2.2d. Wind rose diagrams showing the consistency of wind directions measured at four coastal stations: (a) Okha, (b) Navlakhi (c) Vadinar and (d) Jakhau during Nov to 12 Dec 2002. 47

Fig. 4.2.2e Relative humidity (%) measured at four coastal stations: Jakhau, Okha, Vadinar and Navlakhi during 8 Nov to 12 Dec, 2002. 48

Fig. 5.2.1 Model domain and with bathymetry (depth contours are in metres). 61

Fig. 5.3.1 Velocity fluxes p, q and surface elevation (η) terms on a staggered grid in x- and y-direcions. 62

Fig. 5.5.1 M2 tidal constituent (a) amplitude (a) phase derived from model results (amplitude is in meters and phase in degrees). 63

Fig. 5.5.2 Comparison between currents (modeled & measured) and tides modeled and predicted using the tidal constituents of nearest tide gauge station: (a) u-component of currents, (b) v-component of currents and (c) water levels at location LOC2 during April 2002. 64
Fig. 5.5.3 Comparison between currents (modeled & measured) and tides modeled and predicted using the tidal constituents of nearest tide gauge station: (a) u-component of currents, (b) v-component of currents and (c) water levels at location LOC5.

Fig. 5.5.4 Comparison between currents (modeled & measured) and tides modeled and predicted using the tidal constituents of nearest tide gauge station: (a) u-component of currents, (b) v-component of currents and (c) water levels at location LOC7.

Fig. 5.5.5 Validation of model results at LOC1: (a) comparison and u-component of currents and (b) comparison of v-component of currents.

Fig. 5.5.6 Comparison between currents (modeled & measured) and tides modeled and predicted using the tidal constituents of nearest tide gauge station in November: (a) u-component of currents, (b) v-component of currents and (c) water levels at location LOC2.

Fig. 5.5.7 Comparison between currents (modeled & measured) and tides modeled and predicted using the tidal constituents of nearest tide gauge station in November: (a) u-component of currents, (b) v-component of currents and (c) water levels at location LOC5.

Fig. 5.5.8 Comparison between currents (modeled & measured) and tides modeled and predicted using the tidal constituents of nearest tide gauge station in November: (a) u-component of currents, (b) v-component of currents and (c) water levels at location LOC10.

Fig. 6.1.1 Model simulated water levels during (a) ebb and (b) flood phases of the tide.

Fig. 6.1.2 Comparison between modelled water levels at (a) LOC2, (b) LOC5 and (c) LOC7 during April 2002.

Fig. 6.1.3 Comparison between modelled u-components of currents at (a) LOC2, (b) LOC5 and (c) LOC7 during April 2002.

Fig. 6.1.4 Comparison between modelled v-components of currents at (a) LOC2, (b) LOC5 and (c) LOC7 during April 2002.

Fig. 6.1.5 Current pattern in the Gulf of Kachchh during a typical spring tide on 13.04.2002; (a) ebb currents and (b) flood currents.

Fig. 6.1.6 Current pattern in the Gulf of Kachchh during a typical neap tide on 06.04.2002; (a) ebb currents and (b) flood currents.

Fig. 6.1.7 Comparison between modelled water levels at (a) LOC2, (b) LOC5 and (c) LOC10 during November 2002.

Fig. 6.1.8 Comparison between modelled u-component of currents at (a) LOC2, (b) LOC5 and (c) LOC10 during November 2002.

Fig. 6.1.9 Comparison between modelled v-component of currents at (a) LOC2, (b) LOC5 and (c) LOC10 during November 2002.

Fig. 6.2.1 Comparison between modelled currents obtained during April 2002 (i) without wind, (ii) constant wind of 10 m/s from west and (iii) with winds measured at Mundra: (a) u-component of currents, (b) v-component of currents and (c) current speed enhancement for constant wind.

Fig. 6.3.1 Comparison of measured and modelled (a) water elevation, (b) current u-component (negative values refer to the west and positive values to the east) and (c) current v-component (negative values refer to the south and positive values to the north) off Mundra during December 1992 – January 1993. Dotted lines indicate model results and the solid lines indicate the measured velocity or the predicted water level data. Residual current u-component is also shown in (b).

Fig. 6.3.2 Comparison between measured and modelled (a) water elevation (b) current u-component (negative values refer to the west and positive values to the east) and (c) current v-component (negative values refer to the south and positive values to the north) for pre-monsoon period, March 1994 off Vadinar. Dotted lines indicate model results and solid lines the measured velocity or the predicted water level data. Residual currents u-component is also shown in (b).

Fig. 6.3.3 Comparison between measured and modelled (a) water elevation (b) current u-component (negative values refer to the west and positive values to the east) and (c) current v-component (negative values refer to the south and positive values to the north) for southwest monsoon conditions off Sikka. Dotted lines indicate model results and solid lines the measured velocity or the predicted water level data. Residual currents u-component is also shown in (b).
Fig. 6.3.4 u-component of measured, tidal and residual currents for (a) neap tide and (b) spring tide off Sikka during southwest monsoon period ... 91

Fig. 6.4.1 Residual flow field in the Gulf of Kachchh based on modeled current components.
The residual eddies are located in the western Gulf: ACE1 and ACE3 are anticyclonic and CE2 is cyclonic ... 93

Fig. 6.4.2 A typical particle trajectory based on the model flow field (starting point: off Mundra; end point: off Vadinar) .. 93

Fig. 7.3.1 Model simulation of currents in the upper five layers of 4m thickness 101

Fig. 7.3.2 3D model simulated vertical section of u-component of the (a) ebb current and (b) flood current on 17.11.02 ... 102

Fig. 7.3.3 Comparison between currents (modeled & measured) and tides (modeled and predicted using the tidal constituents of nearest the tide gauge station): (a) u-component of currents, (b) v-component of currents and (c) water level at location LOC2 during November 2002 ... 103

Fig. 7.3.4 Comparison between currents (modeled & measured) and tides (modeled and predicted using the tidal constituents of nearest the tide gauge station): (a) u-component of currents, (b) v-component of currents and (c) water level at location LOC5 during November 2002 ... 104

Fig. 7.3.5 Model simulated (a) salinity and (b) temperature off Mundra for the simulation period 6-30 November 2002 ... 105

Fig. 7.3.6 Model simulated (a) salinity and (b) temperature off Mundra for the simulation period, 30 November-9 December 2002 .. 106

Fig. 7.3.7 Simulation of salinity in the Gulf of Kachchh during (a) flood tide and (b) ebb tide. 107

Fig. 7.3.8 Simulation of temperature in the Gulf of Kachchh during (a) flood tide and (b) ebb tide .. 108

Fig. 7.3.9 Model simulated (a) salinity and (b) temperature along a vertical section from the mouth to head of the Gulf (along grid 100) ... 109

Fig. 7.3.10 Model simulation of salinity in the upper five layers of 4m thickness 110