FIGURES & TABLES
Fig. 7: Morphology of Scbacinaceae. (a & b) growth on Kafer Agar; (c & d) growth in Kafer broth; (e & f) larger view of c & d respectively (arrows show colonial surface)
Fig. 8.a: *P. indica* on Kafer agar showing concentric rings indicating rhythmic growth

Fig. 8.b: *P. indica* in Kafer broth under constant shaking conditions at $28 \pm 2^\circ\text{C}$ for 15 days
Fig. 9: Microscopy of *P. indica* and *S. vermisfera* sensu. (a,b) Immuno-fluorescence of *P. indica* and *S. vermisfera* sensu seen under blue filter in Confocal microscopy. The characteristic fluorescence pigments were restricted at cell wall of chlamydospor.e. (c,d) Autofluorescence by *P. indica* and *S. vermisfera* chlamydospor.es The characteristic pear shaped chlamydospor.es are more common in *P. Indica* than *S. vermisfera* sensu; (e,f) Trypan blue stained *P. indica* and *S. vermisfera* sensu examined under stereoscopic binocular microscope.
Fig. 10: Scanning electron microscopy of spore production in *P. indica*
Fig. 11: Electron microscopy of *P. indica* mycelium and stalked spore
Fig. 12a: Comparative linear growth on Kafer agar medium
Fig. 12b: Comparative linear growth and surface area of Sebacinales
Fig. 13: *P. indica* and *S. vermifera* sensu in (a) Kafer;(b)MMN media
Fig. 14: Growth of *P. indica* and *S. vermifera* sensu in Kafer broth at different time intervals (days)
Fig. 14: Growth of *P. indica* and *S. vermifera* sensu in Kafer broth at different time intervals (days).
Fig. 15a: Fresh biomass of Sebacinaeae on different period in Kafer broth

Fig. 15b: Dry biomass of Sebacinaeae on different period in Kafer broth
Fig. 16: Interaction of *P. indica* with rhizobacteria on Kafer medium
(a) Control; (b) *P. indica* with *Ps. fluorescence*; (C) *P. indica* with *Az. chroococcum*
Fig. 17: Interaction between *P. indica* and rhizobacteria

(P: Piriformospora indica; Ps: Pseudomonas fluorescens; Az: Azotobacter chroococcum)
Fig. 18: Interaction between *P. indica* and rhizobacteria on different model experiment

(P: *Piriformospora indica*; Ps: *Pseudomonas fluorescence*;
Az: *Azotobacter chroococcum*)
Fig. 19: Growth of *P. indica* on rhizobacterial culture
(a) Control; (b) *P. indica* with *Ps. fluorescence*; (C) *P. indica* with *Az. chroococcum*
Fig. 21: *P. indica* colony grown under the influence of bacterial culture filtrate
(a) Control; (b) *P. indica* with *Ps. fluorescence*; (C) *P. indica* with *Az. chroococcum*
Fig. 22: Changes in hyphal morphology after interaction of *P. indica* with PGPRs (a) Control; (b) *P. indica* with *Ps. fluorescence*; (c) *P. indica* with *Az. chroococcum*
Fig. 23a: Antimicrobial activity of *Ps. fluoscence* on soil micro flora

Fig. 23b: HCN production by *Ps. fluoscence*

Fig. 23c: Ammonia production by *Ps. fluoscence*
(a) Control; (b) *Ps. fluoscence*
Fig. 24: Interaction of *P. indica* with pathogenic species *Alternaria solani*
Fig. 25: Interaction of *P. indica* with pathogenic species *Dreschlera sorokiniana*
Fig. 26: Interaction of *P. indica* with pathogenic species *Magnaphorthe* sp.
Fig. 27: Micropropagation of *Bacopa monniera* under aseptic conditions (a) 4 weeks; (b) 6 weeks; (c) 8 weeks (d) 10 weeks
Fig. 28: Interaction of *Bacopa moniera* with *P. indica*

a. MS Medium; b. WPM Medium
Fig. 29: Interaction of *Bacopa monniera* with *P. indica*
(a) MMN1/10 medium; (b) Kafer Medium
Fig. 30: Interaction of *Bacopa moniera* with *P. indica* in Kafer medium and its enlarged view
Fig. 31: Micropropagation of *Bacopa monniera* in green house conditions
(a) Control; (b) *P. indica* treated

Fig. 32: Root colonization of *B. monniera* with the endo-symbiont *P. indica*
Fig. 33: Scanning electron micrograph of *P. indica* colonized root of *Bacopa*
(a, b) Untreated control of *Bacopa*; (c, d, e, f) Colonized roots of *Bacopa*
Fig. 34: Transmission electron micrograph of uninoculated roots of Bacopa

(a) OM=6300X, FM=18900X; (b) OM=1500X, FM=4500X;
(c) OM=1550X, FM=4650X; (d) OM=1950X, FM=5850X;

OM=Original magnification; FM=Final magnification;
CW=Cell Wall; CM=Cell membrane; MT=Mitochondria;
VA=Vacuole; Li=Lipid bodies;
Fig. 35: Transmission electron micrograph of *P. indica* colonized roots of Bacopa
(a) OM=4600X, FM=13800X; (b) OM=6300X, FM=18900X;
(c) OM=3400X, FM=10200X; (d) OM=4600X, FM=13800X.
OM=Original magnification; FM=Final magnification
Pl= *P. indica*
Fig. 36: Transmission electron micrograph of *P. indica* colonized roots of Bacopa
(a) OM=2650X, FM=7950X; (b) OM=3400X, FM=10200X;
(c) OM=3400X, FM=10200X; (d) OM=1150X, FM=3450X.
OM=Original magnification; FM=Final magnification;
P1= *P. indica*; VA=Vacuole; HY=Hyphae
Fig. 36: Transmission electron micrograph of *P. indica* colonized roots of Bacopa
(a) OM=2650X, FM=7950X; (b) OM=3400X, FM=10200X;
(c) OM=3400X, FM=10200X; (d) OM=1150X, FM=3450X.
OM=Original magnification; FM=Final magnification;
PI= *P. indica*; VA=Vacuole; HY=Hyphae
Fig. 37: Graphical representation of Antioxidants Production in *B. monniera*

<table>
<thead>
<tr>
<th>Sample</th>
<th>Antioxidant activity (nmoles trolox/g equivalent)</th>
<th>Relative Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacopa 1 (Kafer Control)</td>
<td>0.766</td>
<td>-</td>
</tr>
<tr>
<td>Bacopa 2 (Kafer treated)</td>
<td>6.095</td>
<td>7.95 X</td>
</tr>
<tr>
<td>Bacopa 3 (MMN 1/10 Control)</td>
<td>5.236</td>
<td>-</td>
</tr>
<tr>
<td>Bacopa 4 (MMN 1/10 treated)</td>
<td>8.028</td>
<td>1.53 X</td>
</tr>
</tbody>
</table>
Fig. 38: Radar plot of fluorescence kinetics of Bacopa with *P. indica* treated

(Green colour - control; Red colour - *P. indica* inoculated)

Specific fluxes or specific activities (per active reaction center):
- ABS/RC: Energy flux absorbed
- TR0/RC: Energy flux trapped
- ETO/RC: Electron transport flux

Phenomenological fluxes or phenomenological activities (per excited cross-section):
- ABS/CS0: Energy flux absorbed
- TR0/CS0: Energy flux trapped
- ETO/CS0: Electron transport flux
- RC/CS0: Density of active reaction centers

Yields or ratio of fluxes:
- PI/(abs): Performance index based on equal transport
- PHI/P0: Maximum quantum yield of primary photochemistry
- PHI/E0: Maximum quantum yield of electron transport
Fig. 39: Mycosymbiosis with Zea mays
(a) Control- maize (Zea mays var white) untreated;
(b) P. indica treated; (c) S. vermifera sensu treated

Fig. 40: The chlamydospores of P. indica (a,c,e) and S. vermifera sensu (b,d,f) in cortical tissues of colonized maize roots stained by trypan blue
Fig. 41: *In vitro* interaction of *Vigna radiata* with *P. indica*
(a) Untreated; (b) treated

Fig. 42: Interaction of *P. indica* and PGPR with *Vigna radiata*
Fig. 43: Interaction of *P. indica* with *Vigna radiata*
(controls shows infection by insects while treated shows early fruiting)
Fig. 44: Interaction of *P. indica* and PGPR with Mungbean
(a) Control; (b) *P. indica* treated; (c) *Bradyrhizobium* treated
(d) *P. indica + Bradyrhizobium* treated
Fig. 45: *P. indica* colonized root of Mungbean showing chlamydospores in root cortex
Fig. 46: Native PAGE stained with Coomassie brilliant blue showing whole protein profile. Lane 1: Piriformospora indica; Lane 2: Sebacina vermifera sensu.

Fig. 47: SDS PAGE gel stained with Coomassie blue showing whole Protein profile. Lane 1 - Piriformospora indica; Lane 2 - Sebacina vermifera; Lane M - Molecular marker.
Fig 48: Similarity Matrix of *P. indica* and *Sebacina vermisfera* sensu on the basis of protein profile
Fig. 49a: Protein profile of Bacopa root after 10 days of inoculation
M: Marker; 1: Inoculated Bacopa root; 2: Uninoculated control

Fig. 49b: Protein profile of Bacopa root after 20 and 30 days of inoculation
M: Marker; 1: Control (20 days); 2: Treated (20 days); 3: Control (30 days); 4: treated (30 days)
Fig. 50: SDS Denatured Polyacrylamide Gel Electrophoretogram of proteins Extracted from 45 d old maize root. Lane 1: marker; Lane 2: maize control; Lane 3: root colonized with *P. indica*.
Fig. 51: Protein profile of *Vigna radiata*, M: Marker proteins; Lane 1: Untreated *P. indica*; Lane 2: Treated *P. indica*

Fig. 52: Amplified Enod 2 gene of Mung bean
M. Marker; Lane 1: *P. indica* inoculated; Lane 2: *P. indica* un-inoculated (control)