CHAPTER 3

GENERALIZED SEMI GENERALIZED CLOSED SETS IN BITOPOLITICAL SPACES

3.1 INTRODUCTION

A triple (X, τ_1, τ_2), where X is a nonempty set and τ_1 and τ_2 are topologies on X is called a bitopological space and Kelly (1963) initiated the systematic study of such spaces. In this chapter, generalized semi generalized closed sets ((i,j)-gsg-closed sets) in bitopological spaces are analyzed and basic properties of these sets are studied. The notion of (i,j)-T_{gsg} space and (i,j)-gsg continuous mapping in bitopological space are introduced and some of their properties are investigated. Throughout this chapter, $i, j, k = 1, 2$ where $i \neq j \neq k$.

Here are a few more definitions and results which are to be used in this chapter.

Definition 3.1.1 A subset A of a bitopological space (X, τ_1, τ_2) is called (i,j)-gsp-closed if τ_j-$spCl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i-open in (X, τ_1, τ_2).

Definition 3.1.2 A subset A of a bitopological space (X, τ_1, τ_2) is called (i,j)-gp-closed if τ_j-$pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i-open in (X, τ_1, τ_2).
Definition 3.1.3 Let \((X, \tau_1, \tau_2)\) and \((Y, \sigma_1, \sigma_2)\) be two bitopological spaces. A mapping \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)\) is called \((i, j)\)-gsp-\(\sigma_k\)-continuous if the inverse image of every \(\sigma_k\)-closed in \((Y, \sigma_1, \sigma_2)\) is \((i, j)\)-gsp-closed in \((X, \tau_1, \tau_2)\).

Definition 3.1.4 Let \((X, \tau_1, \tau_2)\) and \((Y, \sigma_1, \sigma_2)\) be two bitopological spaces. A mapping \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)\) is called \((i, j)\)-gp-\(\sigma_k\)-continuous if the inverse image of every \(\sigma_k\)-closed in \((Y, \sigma_1, \sigma_2)\) is \((i, j)\)-gp-closed in \((X, \tau_1, \tau_2)\).

3.2 \(gsg\)-CLOSED SETS IN BITOPOLOGICAL SPACE

In this section, the concept of \((i, j)\)-gsg-closed sets in bitopological spaces are introduced and this set is compared with already existing closed sets in bitopological spaces. The counter examples are given whenever necessary.

Definition 3.2.1 A subset \(A\) of a bitopological space \((X, \tau_1, \tau_2)\) is said to be a \((i, j)\)-generalized semi generalized closed set (in short, \((i, j)\)-gsg-closed) if \(\tau_j-\text{Cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\tau_l\)-s\(g\)-open in \(X\).

Proposition 3.2.1 Every \(\tau_j\)-closed set is \((i, j)\)-gsg-closed in a bitopological space \((X, \tau_1, \tau_2)\).

Proof: Let \(A\) be any \(\tau_j\)-closed set and \(U\) be any \(\tau_l\)-s\(g\)-open set containing \(A\), in a bitopological space \((X, \tau_1, \tau_2)\). Then \(\tau_j-\text{Cl}(A) = A \subseteq U\). Hence \(A\) is \((i, j)\)-gsg-closed in a bitopological space \((X, \tau_1, \tau_2)\).

Proposition 3.2.2 Every \((i, j)\)-gsg-closed set is \((i, j)\)-g-closed in a bitopological space \((X, \tau_1, \tau_2)\).
Proof: Let A be any (i,j)-gsg-closed set and U be any τ_i-open set containing A in a bitopological space (X, τ_1, τ_2). Since every τ_i-open set is τ_i-sg-open set and A is (i,j)-gsg-closed set, then τ_j-$Cl(A) \subseteq U$. Hence A is (i,j)-g-closed in a bitopological space (X, τ_1, τ_2).

Proposition 3.2.3 Every (i,j)-gsg-closed set is (i,j)-ω-closed in a bitopological space (X, τ_1, τ_2).

Proof: Let A be any (i,j)-gsg-closed set and U be any τ_i-semi open set containing A in a bitopological space (X, τ_1, τ_2). Since every τ_i-semi open set is τ_i-sg-open set and A is (i,j)-gsg-closed set, then τ_j-$Cl(A) \subseteq U$. Hence A is (i,j)-ω-closed in a bitopological space (X, τ_1, τ_2).

Proposition 3.2.4 Every (i,j)-gsg-closed set is (i,j)-sg-closed in a bitopological space (X, τ_1, τ_2).

Proof: Let A be any (i,j)-gsg-closed set and U be any τ_i-semi open set containing A in a bitopological space (X, τ_1, τ_2). Since every τ_i-semi open set is τ_i-sg-open set and A is (i,j)-gsg-closed set, τ_j-$SgCl(A) \subseteq \tau_j$-$Cl(A) \subseteq U$. Hence A is (i,j)-sg-closed in a bitopological space (X, τ_1, τ_2).

Proposition 3.2.5 Every (i,j)-gsg-closed set is (i,j)-gs-closed, (i,j)-gps-closed and (i,j)-gp-closed in a bitopological space (X, τ_1, τ_2).

Proof: Let A be any (i,j)-gsg-closed set and U be any τ_i-open set containing A in a bitopological space (X, τ_1, τ_2). Then τ_j-$SgCl(A) \subseteq \tau_j$-$Cl(A) \subseteq U$. Hence A is (i,j)-gs$-closed in a bitopological space (X, τ_1, τ_2). Similarly, τ_j-$SpCl(A) \subseteq \tau_j$-$Cl(A)$ and τ_j-$pCl(A) \subseteq \tau_j$-$Cl(A)$ gives A is (i,j)-gps-closed and (i,j)-gp-closed in a bitopological space (X, τ_1, τ_2).
The pictorial representation of the above discussion is expressed in Figure 3.1.

![Figure 3.1](image)

Figure 3.1 Comparison of \((i,j)\)-gsg-closed set with other closed sets in bitopological space

The following examples show that the converses of the above implications are not true in general.

Example 3.2.1

Let \(X = \{x, y, z\}\), \(\tau_1 = \{\varnothing, \{x\}, X\}\), \(\tau_2 = \{\varnothing, \{x, y\}, X\}\). Clearly \((X, \tau_1, \tau_2)\) is a bitopological space. Then \(\{y, z\}\) is \((1,2)\)-gsg-closed but not \(\tau_2\)-closed.

Example 3.2.2

Let \(X = \{x, y, z\}\), \(\tau_1 = \{\varnothing, \{x\}, X\}\), \(\tau_2 = \{\varnothing, \{x\}, \{y\}, \{x, y\}, X\}\). Clearly \((X, \tau_1, \tau_2)\) is a bitopological space. Then \(\{x, y\}\) is \((1,2)\)-g-closed but not \((1,2)\)-gsg-closed.
Example 3.2.3

Let $X = \{x, y, z\}$, $\tau_1 = \{\varnothing, \{x, y\}, X\}$, $\tau_2 = \{\varnothing, \{x\}, \{z\}, \{x, z\}, X\}$. Clearly (X, τ_1, τ_2) is a bitopological space. Then $\{x\}$ is $(1,2)$-ω-closed but not $(1,2)$-$gs\,g$-closed.

Example 3.2.4

Let $X = \{x, y, z\}$, $\tau_1 = \{\varnothing, \{x\}, X\}$, $\tau_2 = \{\varnothing, \{x\}, \{y, z\}, X\}$. Clearly (X, τ_1, τ_2) is a bitopological space. Then $\{x, y\}$ is $(1,2)$-gs-closed but not $(1,2)$-$gs\,g$-closed.

Example 3.2.5

Let $X = \{x, y, z, w\}$, $\tau_1 = \{\varnothing, \{x, y, z\}, X\}$, $\tau_2 = \{\varnothing, \{x, w\}, \{x, y, w\}, X\}$. Clearly (X, τ_1, τ_2) is a bitopological space. Then $\{y\}$ is $(1,2)$-sg-closed but not $(1,2)$-$gs\,g$-closed.

Example 3.2.6

Let $X = \{x, y, z\}$, $\tau_1 = \{\varnothing, \{x, \{y\}, \{x, y\}, X\}$, $\tau_2 = \{\varnothing, \{x\}, \{y\}, \{x, y\}, X\}$. Clearly (X, τ_1, τ_2) is a bitopological space. Then $\{x\}$ is $(1,2)$-$gs\,p$-closed but not $(1,2)$-$gs\,g$-closed.

Example 3.2.7

Let $X = \{x, y, z\}$, $\tau_1 = \{\varnothing, \{z\}, X\}$, $\tau_2 = \{\varnothing, \{x\}, \{x, y\}, X\}$. Clearly (X, τ_1, τ_2) is a bitopological space. Then $\{x\}$ is $(1,2)$-gp-closed but not $(1,2)$-$gs\,g$-closed.
Definition 3.2.2 A subset A of a bitopological space (X, τ_1, τ_2) is said to be \textit{(i, j)-generalized semi generalized open set} (in short, \textit{(i, j)-gsg-open}) if $X - A$ is \textit{(i, j)-gsg-closed} in (X, τ_1, τ_2).

Theorem 3.2.1 In a bitopological space (X, τ_1, τ_2),

i. Every τ_i-open set is \textit{(i, j)-gsg-open}.

ii. Every \textit{(i, j)-gsg-open} set is \textit{(i, j)-g-open} and \textit{(i, j)-o-open}.

iii. Every \textit{(i, j)-gsg-open} set is \textit{(i, j)-sg-open} and \textit{(i, j)-gs-open}.

iv. Every \textit{(i, j)-gsg-open} set is \textit{(i, j)-gps-open} and \textit{(i, j)-gp-open}.

Proof: It is easy to prove.

Theorem 3.2.2 If A and B are \textit{(i, j)-gsg-closed} in a bitopological space (X, τ_1, τ_2) then $A \cup B$ is \textit{(i, j)-gsg-closed}.

Proof: Let U be any τ_i-sg-open set containing A and B in a bitopological space (X, τ_1, τ_2). Then $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are \textit{(i, j)-gsg-closed}, τ_j-$\text{Cl}(A) \subseteq U$ and τ_j-$\text{Cl}(B) \subseteq U$. That is, τ_j-$\text{Cl}(A \cup B) = \tau_j$-$\text{Cl}(A) \cup \tau_j$-$\text{Cl}(B) \subseteq U$, so τ_j-$\text{Cl}(A \cup B) \subseteq U$. Hence $A \cup B$ is \textit{(i, j)-gsg-closed}.

Theorem 3.2.3 If a set A is \textit{(i, j)-gsg-closed} in a bitopological space (X, τ_1, τ_2) then τ_j-$\text{Cl}(A) - A$ contains no nonempty τ_i-closed set.

Proof: Let A be any \textit{(i, j)-gsg-closed} and F be a τ_i-closed set in a bitopological space (X, τ_1, τ_2) such that $F \subseteq \tau_j$-$\text{Cl}(A) - A$. Since A is
(i,j)-gs-g-closed, \(\tau_j-Cl(A) \subseteq X - F \). Then \(F \subseteq \tau_j-Cl(A) \cap (X - \tau_j-Cl(A)) = \emptyset \). Hence \(F \) is empty.

The converse of the above theorem is not true as shown in the following example.

Example 3.2.8

Let \(X = \{x, y, z\} \), \(\tau_1 = \{\varnothing, \{z\}, X\} \), \(\tau_2 = \{\varnothing, \{x\}, \{x, y\}, X\} \). Clearly \((X, \tau_1, \tau_2)\) is a bitopological space. If \(A = \{x\} \) then \(\tau_2-Cl(A) - A = \{y, z\} \) does not contain nonempty \(\tau_1 \)-closed set. But \(\{x\} \) is not \((1,2)\)-gs-g-closed.

Theorem 3.2.4 A set \(A \) is \((i,j)\)-gs-g-closed in a bitopological space \((X, \tau_1, \tau_2)\) if and only if \(\tau_j-Cl(A) - A \) contains no nonempty \((i,j)\)-gs-g-closed set in a bitopological space \((X, \tau_1, \tau_2)\).

Proof: Let \(A \) be any \((i,j)\)-gs-g-closed in a bitopological space \((X, \tau_1, \tau_2)\) and \(D \) be a \((i,j)\)-gs-g-closed set in a bitopological space \((X, \tau_1, \tau_2)\) such that \(D \subseteq \tau_j-Cl(A) - A \). Since \(A \) is \((i,j)\)-gs-g-closed, \(\tau_j-Cl(A) \subseteq X - D \). Then \(D \subseteq \tau_j-Cl(A) \cap (X - \tau_j-Cl(A)) = \emptyset \). Thus \(D \) is empty.

Conversely, suppose that \(\tau_j-Cl(A) - A \) contains no nonempty \((i,j)\)-gs-g-closed set. Let \(A \subseteq G \) and \(G \) is \((i,j)\)-gs-g-open. If \(\tau_j-Cl(A) \not\subseteq G \) then \(\tau_j-Cl(A) \cap X - G \) is nonempty. Since \(\tau_j-Cl(A) \) is closed set and \(X - G \) is \((i,j)\)-gs-g-closed, \(\tau_j-Cl(A) \cap X - G \) is nonempty \((i,j)\)-gs-g-closed set of \(\tau_j-Cl(A) - A \) which is a contradiction. Therefore \(\tau_j-Cl(A) \subseteq G \). Hence \(A \) is \((i,j)\)-gs-g-closed in a bitopological space \((X, \tau_1, \tau_2)\).

Theorem 3.2.5 If a set \(A \) is \((i,j)\)-gs-g-closed in a bitopological space \((X, \tau_1, \tau_2)\) then \(\tau_i-Cl(\{x\}) \cap A \neq \emptyset \) holds for each \(x \in \tau_j-Cl(A) \).
Proof : If \(\tau_i^{-}\text{Cl}(\{x\}) \cap A = \emptyset \) for some \(x \in \tau_j^{-}\text{Cl}(A) \), then \(A \subseteq X - (\tau_i^{-}\text{Cl}(\{x\})) \). Since \(A \) is \((i,j)\)-\text{gsg}-closed in a bitopological space \((X, \tau_1, \tau_2)\), \(\tau_j^{-}\text{Cl}(A) \subseteq (X - \tau_i^{-}\text{Cl}(\{x\})) \). This shows that \(x \notin \tau_j^{-}\text{Cl}(A) \). This contradicts the assumption. Hence \(\tau_i^{-}\text{Cl}(\{x\}) \cap A \neq \emptyset \) holds for each \(x \in \tau_j^{-}\text{Cl}(A) \).

The converse of the above theorem is not true as shown in the following example.

Example 3.2.9 Let \(X = \{x, y, z\} \), \(\tau_1 = \{\emptyset, \{x\}, X\} \), \(\tau_2 = \{\emptyset, \{x\}, \{y, z\}, X\} \). Clearly \((X, \tau_1, \tau_2)\) is a bitopological space. A subset \(A = \{x, y\} \) is not \((1,2)\)-\text{gsg}-closed set, but \(\tau_1^{-}\text{Cl}(\{x\}) \cap A \neq \emptyset \), for each \(x \in \tau_2^{-}\text{Cl}(A) \).

Theorem 3.2.6 If \(A \) is a \((i,j)\)-\text{gsg}-closed set of a bitopological space \((X, \tau_1, \tau_2)\) such that \(A \subseteq B \subseteq \tau_j^{-}\text{Cl}(A) \), then \(B \) is an \((i,j)\)-\text{gsg}-closed set of a bitopological space \((X, \tau_1, \tau_2)\).

Proof : Let \(U \) be \(\tau_i^{-}\text{sg}\)-open set such that \(B \subseteq U \) in a bitopological space \((X, \tau_1, \tau_2)\). Since \(A \) is \((i,j)\)-\text{gsg}-closed and \(A \subseteq U \), \(\tau_j^{-}\text{Cl}(A) \subseteq U \). Now \(B \subseteq \tau_j^{-}\text{Cl}(A) \) which gives, \(\tau_j^{-}\text{Cl}(B) \subseteq \tau_j^{-}\text{Cl}\{\tau_j^{-}\text{Cl}(A)\} = \tau_j^{-}\text{Cl}(A) \subseteq U \). Thus \(\tau_j^{-}\text{Cl}(B) \subseteq U \). Hence \(B \) is \((i,j)\)-\text{gsg}-closed set of a bitopological space \((X, \tau_1, \tau_2)\).

Theorem 3.2.7 In a bitopological space \((X, \tau_1, \tau_2)\), \(\text{SGO}(X, \tau_i) \subseteq \{F \subseteq X : X - F \in \tau_j\} \) if and only if every subset of \((X, \tau_1, \tau_2)\) is an \((i,j)\)-\text{gsg}-closed set in \((X, \tau_1, \tau_2)\).

Proof : Suppose that \(\text{SGO}(X, \tau_i) \subseteq \{F \subseteq X : X - F \in \tau_j\} \). Let \(A \) be a subset of \(X \) and \(U \) be \(\tau_i^{-}\text{sg}\)-open set in a bitopological space \((X, \tau_1, \tau_2)\) such that \(A \subseteq U \). Then \(\tau_j^{-}\text{Cl}(A) \subseteq \tau_j^{-}\text{Cl}(U) = U \). Hence \(A \) is an \((i,j)\)-\text{gsg}-closed set in a bitopological space \((X, \tau_1, \tau_2)\).
Conversely, suppose that every subset of \((X, \tau_1, \tau_2)\) is a \((i, j)\)-gsg-closed set. Let \(U \in SGO(X, \tau_i)\). Since \(U\) is a \((i, j)\)-gsg-closed set, \(\tau_j-\text{Cl}(U) \subseteq U\). Therefore \(U \in \{F \subseteq X: X - F \in \tau_j\}\). Hence \(SGO(X, \tau_i) \subseteq \{F \subseteq X: X - F \in \tau_j\}\).

Theorem 3.2.8 If \(A\) is \(\tau_i\)-sg-open and \((i, j)\)-gsg-closed in a bitopological space \((X, \tau_1, \tau_2)\) then \(A\) is \(\tau_j\)-closed in \((X, \tau_1, \tau_2)\).

Proof : Since \(A\) is \(\tau_i\)-sg-open and \((i, j)\)-gsg-closed in \((X, \tau_1, \tau_2)\), then \(\tau_j-\text{Cl}(A) \subseteq A\). But \(A \subseteq \tau_j-\text{Cl}(A)\), which gives \(A = \tau_j-\text{Cl}(A)\). Hence \(A\) is \(\tau_j\)-closed in \((X, \tau_1, \tau_2)\).

Theorem 3.2.9 For each point \(x\) of \((X, \tau_1, \tau_2)\), either a singleton set \(\{x\}\) is \(\tau_i\)-sg-closed or \(X - \{x\}\) is \((i, j)\)-gsg-closed in \((X, \tau_1, \tau_2)\).

Proof : If set \(\{x\}\) is not \(\tau_i\)-sg-closed in \((X, \tau_1, \tau_2)\) then \(X - \{x\}\) is not \(\tau_i\)-sg-open in \((X, \tau_1, \tau_2)\) and the only \(\tau_i\)-sg-open set containing \(X - \{x\}\) is the space \((X, \tau_1, \tau_2)\) itself. Then \(\tau_j-\text{Cl}(X - \{x\}) \subseteq (X, \tau_1, \tau_2)\) and so \(X - \{x\}\) is \((i, j)\)-gsg-closed in \((X, \tau_1, \tau_2)\).

3.3 APPLICATION OF \((i, j)\)-gsg-CLOSED SETS

In this section as an application of \((i, j)\)-gsg-closed sets, \((i, j)\)-\(T_{gsg}\) -space in bitopological spaces are introduced and investigated some of its properties.

Definition 3.3.1 A bitopological space \((X, \tau_1, \tau_2)\) is called a \((i, j)\)-\(T_{gsg}\) -space if every \((i, j)\)-gsg-closed set in it is \(\tau_j\)-closed.

Proposition 3.3.1 Every \((i, j)\)-\(T_{1/2}\) -space is a \((i, j)\)-\(T_{gsg}\) -space.
Proof: Let \((X, \tau_1, \tau_2)\) be a \((i,j)\)-\(T_{1/2}\)-space and let \(A\) be a \((i,j)\)-\(gsg\)-closed set in \((X, \tau_1, \tau_2)\). By proposition 3.2.2, \(A\) is a \((i,j)\)-\(g\)-closed in \((X, \tau_1, \tau_2)\). Since \((X, \tau_1, \tau_2)\) is a \((i,j)\)-\(T_{1/2}\)-space, \(A\) is \(\tau_j\)-closed in \((X, \tau_1, \tau_2)\). Hence \((X, \tau_1, \tau_2)\) is a \((i,j)\)-\(T_{gsg}\)-space.

Proposition 3.3.2 Every \((i,j)\)-\(T_{\omega}\)-space is a \((i,j)\)-\(T_{gsg}\)-space.

Proof: Let \((X, \tau_1, \tau_2)\) be a \((i,j)\)-\(T_{\omega}\)-space and let \(A\) be a \((i,j)\)-\(gsg\)-closed set in \((X, \tau_1, \tau_2)\). By proposition 3.2.3, \(A\) is a \((i,j)\)-\(\omega\)-closed in \((X, \tau_1, \tau_2)\). Since \((X, \tau_1, \tau_2)\) is a \((i,j)\)-\(T_{\omega}\)-space, \(A\) is \(\tau_j\)-closed in \((X, \tau_1, \tau_2)\). Hence \((X, \tau_1, \tau_2)\) is a \((i,j)\)-\(T_{gsg}\)-space.

Proposition 3.3.3 Every \((i,j)\)-\(T_b\)-space is a \((i,j)\)-\(T_{gsg}\)-space.

Proof: Let \((X, \tau_1, \tau_2)\) be a \((i,j)\)-\(T_b\)-space and let \(A\) be a \((i,j)\)-\(gsg\)-closed set in \((X, \tau_1, \tau_2)\). By proposition 3.2.5, \(A\) is a \((i,j)\)-\(g\)-closed set in \((X, \tau_1, \tau_2)\). Since \((X, \tau_1, \tau_2)\) is a \((i,j)\)-\(T_b\)-space, \(A\) is \(\tau_j\)-closed in \((X, \tau_1, \tau_2)\). Hence \((X, \tau_1, \tau_2)\) is a \((i,j)\)-\(T_{gsg}\)-space.

Example 3.3.1 In Example 3.2.1, the space \((X, \tau_1, \tau_2)\) is a \((1,2)\)-\(T_{gsg}\)-space but not a \((1,2)\)-\(T_b\)-space and \((1,2)\)-\(T_{1/2}\)-space.

Theorem 3.3.1 A bitopological space \((X, \tau_1, \tau_2)\) is a \((i,j)\)-\(T_{gsg}\)-space if and only if every singleton set \(\{x\}\) of \((X, \tau_1, \tau_2)\) is either \(\tau_i\)-\(Sg\)-closed or \(\tau_j\)-open.

Proof: Suppose that \(\{x\}\) is not \(\tau_i\)-\(Sg\)-closed. Then \(X - \{x\}\) is \((i,j)\)-\(gsg\)-closed by theorem 3.2.9. Since \((X, \tau_1, \tau_2)\) is a \((i,j)\)-\(T_{gsg}\)-space, \(X - \{x\}\) is \(\tau_j\)-closed. Hence \(\{x\}\) is \(\tau_j\)-open in \((X, \tau_1, \tau_2)\).
Conversely, Let A be a $(i, j)\cdot gsg$-closed set of (X, τ_1, τ_2). Clearly $A \subseteq \tau_j-Cl(A)$. Let $x \in \tau_j-Cl(A)$. Then by hypothesis $\{x\}$ is either τ_i-gsg-closed or τ_j-open.

Case 1: Suppose $\{x\}$ is τ_i-gsg-closed. If $x \notin A$, then $\{x\} \subseteq \tau_j-Cl(A) - A$, this is a contradiction to the theorem 3.2.4. Therefore $x \in A$. So $\tau_j-Cl(A) \subseteq A$.

Case 2: Suppose $\{x\}$ is τ_j-open. Since $x \in \tau_j-Cl(A)$, $\{x\} \cap A \neq \varnothing$. Therefore $x \in A$ So $\tau_j-Cl(A) \subseteq A$.

Hence in both the cases $A = \tau_j-Cl(A)$. That is, A is τ_j-closed.

Thus (X, τ_1, τ_2) is a (i, j)- T_{gsg}-space.

3.4 (i, j)-gsg-CONTINUOUS MAPPING

In this section, the concept of (i, j)-gsg-continuous mapping in bitopological spaces are introduced and some of its properties are established.

Definition 3.4.1 Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) is two bitopological spaces. A mapping $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be $\textbf{(i, j)-gsg-}\sigma_k$-continuous if the inverse image of every σ_k-closed in (Y, σ_1, σ_2) is (i, j)-gsg-closed in (X, τ_1, τ_2).

Theorem 3.4.1 Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) is two bitopological spaces. If a mapping $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is (i, j)-gsg-\sigma_k-continuous then f is (i, j)-sg-\sigma_k-continuous.

Proof: Let A be any σ_k-closed in (Y, σ_1, σ_2). Since f is (i, j)-gsg-\sigma_k-continuous, $f^{-1}(A)$ is (i, j)-gsg-closed in (X, τ_1, τ_2). Then by proposition (3.2.4), $f^{-1}(A)$ is (i, j)-sg-closed in (X, τ_1, τ_2).
Hence f is (i,j)-$s\,g\,\sigma_k$-continuous.

Theorem 3.4.2 Let (X,τ_1,τ_2) and (Y,σ_1,σ_2) be two bitopological spaces. If a mapping $f : (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is (i,j)-$g\,s\,g\,-\sigma_k$-continuous then f is (i,j)-$g\,s\,p\,-\sigma_k$-continuous.

Proof: Let A be any σ_k-closed in (Y,σ_1,σ_2). Since f is (i,j)-$g\,s\,g\,-\sigma_k$-continuous, $f^{-1}(A)$ is (i,j)-$g\,s\,g$-closed in (X,τ_1,τ_2). Then by proposition 3.2.5, $f^{-1}(A)$ is (i,j)-$g\,s\,p$-closed in (X,τ_1,τ_2). Hence f is (i,j)-$g\,s\,p\,-\sigma_k$-continuous.

Theorem 3.4.3 Let (X,τ_1,τ_2) and (Y,σ_1,σ_2) be two bitopological spaces. If a mapping $f : (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is (i,j)-$g\,s\,g\,-\sigma_k$-continuous then f is (i,j)-$g\,p\,-\sigma_k$-continuous, (i,j)-$g\,s\,-\sigma_k$-continuous and (i,j)-$\omega\,-\sigma_k$-continuous.

Proof: The proof is similar to that of theorem 3.4.2.

Theorem 3.4.4 Let (X,τ_1,τ_2) and (Y,σ_1,σ_2) be two bitopological spaces. If a mapping $f : (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is (i,j)-$g\,s\,g\,-\sigma_k$-continuous if and only if inverse image of each σ_k-open set of (Y,σ_1,σ_2) is (i,j)-$g\,s\,g$-open in (X,τ_1,τ_2).

Proof: Let f be (i,j)-$g\,s\,g\,-\sigma_k$-continuous. If A is any σ_k-open set of (Y,σ_1,σ_2) then $X - A$ is σ_k-closed in (Y,σ_1,σ_2). Since f is (i,j)-$g\,s\,g\,-\sigma_k$-continuous, $f^{-1}(X - A) = X - f^{-1}(A)$ is (i,j)-$g\,s\,g$-closed in (X,τ_1,τ_2). Hence $f^{-1}(A)$ is (i,j)-$g\,s\,g$-open in (X,τ_1,τ_2).

Conversely, let A be any σ_k-closed in (Y,σ_1,σ_2). By hypothesis, $f^{-1}(X - A)$ is (i,j)-$g\,s\,g$-open in (X,τ_1,τ_2). Then $f^{-1}(A)$ is (i,j)-$g\,s\,g$-closed in (X,τ_1,τ_2). Hence f is (i,j)-$g\,s\,g\,-\sigma_k$-continuous.
Theorem 3.4.5 Let \((X, \tau_1, \tau_2), (Y, \sigma_1, \sigma_2)\) and \((Z, \eta_1, \eta_2)\) be bitopological spaces. If \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)\) is \((i, j)\)-gs\(g\)-\(\sigma_k\)-continuous and \(g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)\) is \((i, j)\)-\(g\)-\(\sigma_k\)-continuous and \((Y, \sigma_1, \sigma_2)\) is \((i, j)\)-\(T_{1/2}\)-space. Then \(g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)\) is \((i, j)\)-gs\(g\)-\(\sigma_k\)-continuous.

Proof: Let \(A\) be any \(\eta_k\)-closed in \((Z, \eta_1, \eta_2)\). Since \(g\) is \((i, j)\)-\(g\)-\(\sigma_k\)-continuous and \((Y, \sigma_1, \sigma_2)\) is \((i, j)\)-\(T_{1/2}\)-space, \(g^{-1}(A)\) is \(\sigma_j\)-closed in \((Y, \sigma_1, \sigma_2)\). Since \(f\) is \((i, j)\)-gs\(g\)-\(\sigma_k\)-continuous, \(f^{-1}(g^{-1}(A))\) is \((i, j)\)-gs\(g\)-closed in \((X, \tau_1, \tau_2)\). Hence \(g \circ f\) is \((i, j)\)-gs\(g\)-\(\sigma_k\)-continuous.

Theorem 3.4.6 Let \((X, \tau_1, \tau_2)\) and \((Y, \sigma_1, \sigma_2)\) be two bitopological spaces. Let \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)\) be a map.

i. If \((X, \tau_1, \tau_2)\) is an \((i, j)\)-\(T_{1/2}\)-space then \(f\) is \((i, j)\)-\(g\)-\(\sigma_k\)-continuous if and only if it is \((i, j)\)-gs\(g\)-\(\sigma_k\)-continuous.

ii. If \((X, \tau_1, \tau_2)\) is an \((i, j)\)-\(T_{gs\!g}\)-space then \(f\) is \(\tau_j\)-\(\sigma_k\)-continuous if and only if it is \((i, j)\)-gs\(g\)-\(\sigma_k\)-continuous.

Proof:

i. Let \(A\) be any \(\sigma_k\)-closed in \((Y, \sigma_1, \sigma_2)\). Since \(f\) is \((i, j)\)-\(g\)-\(\sigma_k\)-continuous, \(f^{-1}(A)\) is \((i, j)\)-\(g\)-closed in \((X, \tau_1, \tau_2)\). But \((X, \tau_1, \tau_2)\) is an \((i, j)\)-\(T_{1/2}\)-space implies \(f^{-1}(A)\) is \(\tau_j\)-closed. By proposition 3.2.1, \(f^{-1}(A)\) is \((i, j)\)-gs\(g\)-\(\sigma_k\)-closed in \((X, \tau_1, \tau_2)\). Hence \(f\) is \((i, j)\)-gs\(g\)-\(\sigma_k\)-continuous.
Conversely, suppose that \(f \) is \((i,j)\)-gs\(g\)-\(\sigma_k\)-continuous. Let \(A \) be any \(\sigma_k \)-closed in \((Y,\sigma_1,\sigma_2)\). Then \(f^{-1}(A) \) is \((i,j)\)-gs\(g\)-closed in \((X,\tau_1,\tau_2)\). By proposition 3.2.2, \(f^{-1}(A) \) is \((i,j)\)-gs\(g\)-closed in \((X,\tau_1,\tau_2)\). Hence \(f \) is \((i,j)\)-gs\(g\)-\(\sigma_k\)-continuous.

ii. Let \(A \) be any \(\sigma_k \)-closed in \((Y,\sigma_1,\sigma_2)\). Since \(f \) is \(\tau_j \)-\(\sigma_k\)-continuous, \(f^{-1}(A) \) is \(\tau_j \)-closed in \((X,\tau_1,\tau_2)\) By proposition 3.2.1, \(f^{-1}(A) \) is \((i,j)\)-gs\(g\)-closed in \((X,\tau_1,\tau_2)\). Hence \(f \) is \((i,j)\)-gs\(g\)-\(\sigma_k\)-continuous.

Conversely, suppose that \(f \) is \((i,j)\)-gs\(g\)-\(\sigma_k\)-continuous. Let \(A \) be any \(\sigma_k \)-closed in \((Y,\sigma_1,\sigma_2)\). Then \(f^{-1}(A) \) is \((i,j)\)-gs\(g\)-closed in \((X,\tau_1,\tau_2)\). But \((X,\tau_1,\tau_2)\) is an \((i,j)\)-\(T_{gs\!g}\)-space implies \(f^{-1}(A) \) is \(\tau_j \)-closed in \((X,\tau_1,\tau_2)\). Hence \(f \) is \(\tau_j \)-\(\sigma_k\)-continuous.

3.5 CONCLUSION

In this chapter, generalized semi generalized closed sets ((\(i,j\)-gs\(g\)-closed sets) in bitopological space is introduced and basic properties of these sets are analyzed. As an application, the notion of \((i,j)\)-\(T_{gs\!g}\)-space is investigated. Further, \((i,j)\)-gs\(g\) continuous mapping in bitopological space is introduced and some of their properties are investigated.