CHAPTER 5

PAIRWISE FUZZY α^*-CONNECTEDNESS
BETWEEN FUZZY SETS

5.1 INTRODUCTION

The concept of fuzzy α^* set was introduced and studied by Uma et al (2005). The concept of pairwise fuzzy connectedness between fuzzy sets was studied by Thakur & Annamma Philip (1997).

Making use of the above concepts, the concept of pairwise fuzzy α^*-connectedness between fuzzy sets is introduced in this chapter. Some interesting properties are investigated besides giving some examples. Throughout this chapter, $i, j = 1, 2$ where $i \neq j$. Here are a few known definitions which are to be used in this chapter.

Definition 5.1.1 (Uma et al 2005) Let (X, τ) be a fuzzy topological space and λ be a fuzzy set in X. Then λ is called a **fuzzy α^*-set** if $\text{Int}(\lambda) = \text{Int}(\text{Cl}(\lambda))$.

Definition 5.1.2 (Uma et al 2005) Let (X, τ) be a fuzzy topological space and λ be a fuzzy set in X. Then λ is called a **fuzzy α^*-closed** if $\text{Cl}(\lambda) = \text{Cl}(\text{Int}(\lambda))$.

Definition 5.1.3 (Mageswari et al 1993) A fuzzy topological space (X, τ) is said to be **fuzzy connected** between its fuzzy sets λ and μ if and only if there is no fuzzy closed and fuzzy open set δ in X such that $\lambda \leq \delta$ and $\delta \cap \mu$.
Definition 5.1.4 (Thakur & Annamma Philip 1997) A fuzzy bitopological space \((X, \tau_1, \tau_2)\) is said to be **pairwise fuzzy connected** if it has no proper fuzzy set which is both \(\tau_i\) fuzzy open and \(\tau_j\) fuzzy closed, \(i, j = 1, 2, i \neq j\).

Note 5.1.1 A fuzzy set \(\lambda\) which is both fuzzy \(\alpha^*\)-closed and fuzzy \(\alpha^*\)-open is called **fuzzy \(\alpha^*\)-clopen set** (in short, fuzzy \(\alpha^*\)CO).

5.2 Pairwise Fuzzy \(\alpha^*\)-Connectedness Between Fuzzy Sets

Definition 5.2.1 A fuzzy bitopological space \((X, \tau_1, \tau_2)\) is said to be pairwise fuzzy \(\alpha^*\) connected between fuzzy sets \(\lambda\) and \(\mu\) if there is no fuzzy \((i,j)\)fuzzy \(\alpha^*\)CO \((\tau_i\)-fuzzy \(\alpha^*\) closed and \(\tau_j\)-fuzzy \(\alpha^*\) open) set \(\delta\) in \(X\) such that \(\lambda \leq \delta\) and \(\delta \leq \mu\).

Remark 5.2.1 Pairwise fuzzy \(\alpha^*\)-connectedness between fuzzy sets \(\lambda\) and \(\mu\) is not equal to the fuzzy \(\alpha^*\) connectedness between \(\lambda\) and \(\mu\) of \((X, \tau_1)\) and \((X, \tau_2)\).

Property 5.2.1 A fuzzy bitopological space \((X, \tau_1, \tau_2)\) is pairwise fuzzy \(\alpha^*\)-connected between fuzzy sets \(\lambda\) and \(\mu\) if and only if there is no \((i,j)\) fuzzy \(\alpha^*\)CO set \(\delta\) in \(X\) such that \(\lambda \leq \delta \leq 1 - \mu\).

Property 5.2.2 If a fuzzy bitopological space \((X, \tau_1, \tau_2)\) is pairwise fuzzy \(\alpha^*\)-connected between fuzzy sets \(\lambda\) and \(\mu\) then \(\lambda \neq 0\) and \(\mu \neq 0\).

Property 5.2.3 If a fuzzy bitopological space \((X, \tau_1, \tau_2)\) is pairwise fuzzy \(\alpha^*\)-connected between fuzzy sets \(\lambda\) and \(\mu\) if \(\lambda \leq \lambda_1\) and \(\mu \leq \mu_1\), then \((X, \tau_1, \tau_2)\) is pairwise fuzzy \(\alpha^*\) connected between \(\lambda_1\) and \(\mu_1\).
Proof: Suppose the fuzzy bitopological space (X, τ_1, τ_2) is not pairwise fuzzy α'-connected between fuzzy sets λ_1 and μ_1. Then there is an (i,j)-fuzzy $\alpha'CO$ set δ in X such that $\lambda_1 \leq \delta$ and δq_μ. Clearly $\lambda \leq \delta$. Now claim that δq_μ. If δq_μ then there exists a point $x \in X$ such that $\delta(x) + \mu(x) > 1$. Therefore, $\delta(x) + \mu_1(x) > \delta(x) + \mu(x) > 1$ and δq_μ, a contradiction. Hence (X, τ_1, τ_2) is not pairwise fuzzy α'-connected between λ and μ.

Property 5.2.4 A fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy α'-connected between fuzzy sets λ and μ if and only if it is pairwise fuzzy α'-connected between $\tau_i-\alpha'Cl(\lambda)$ and $\tau_j-\alpha'Cl(\mu)$.

Proof: Necessity: It follows by using property 5.2.3.

Sufficiency: Suppose the fuzzy bitopological space (X, τ_1, τ_2) is not pairwise fuzzy α'-connected between fuzzy sets λ and μ. Then there is an (i,j)-fuzzy $\alpha'CO$ set δ in X such that $\lambda \leq \delta$ and δq_μ. Since $\lambda \leq \delta$, $\tau_i-\alpha'Cl(\lambda) \leq \tau_i-\alpha'Cl(\delta) < \delta$ because δ is τ_i-fuzzy α' closed.

Now, $\delta q_\mu \Rightarrow \delta \leq 1 - \mu$

$$\Rightarrow \delta \leq \tau_j-\alpha'Int(1-\mu)$$

$$\Rightarrow \delta \leq 1 - \tau_j-\alpha'Cl(\mu)$$

$$\Rightarrow \delta \leq \delta q_\tau_j-\alpha'Cl(\mu).$$

Hence X is not pairwise fuzzy α'-connected between the sets $\tau_i-\alpha'Cl(\lambda)$ and $\tau_j-\alpha'Cl(\mu)$, which is a contradiction. Hence the result.

Property 5.2.5 Let (X, τ_1, τ_2) be a fuzzy bitopological space and let λ and μ be two fuzzy sets in (X, τ_1, τ_2). If λq_μ then (X, τ_1, τ_2) is pairwise fuzzy α'-connected between the fuzzy sets λ and μ.

Proof: If δ is any (i,j) fuzzy α' CO set in (X, τ_1, τ_2), such that $\lambda \leq \mu$. Then
\[
\lambda q \mu \Rightarrow \delta q \mu.
\]

Property 5.2.6 If a fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy α'-connected neither between λ and μ, nor between λ and δ, then it is not pairwise fuzzy α'-connected between λ and $\mu \vee \delta$.

Proof: Since (X, τ_1, τ_2) is pairwise fuzzy α'-connected neither between the fuzzy sets λ and μ nor between the fuzzy sets λ and δ, there exists (i,j)-fuzzy α' CO sets λ_1 and μ_1 in (X, τ_1, τ_2) such that $\lambda \leq \lambda_1, \lambda_1 \bar{q} \mu$ and $\lambda \leq \mu_1, \mu_1 \bar{q} \delta$. Put $\delta_1 = \lambda_1 \wedge \mu_1$. Then δ_1 is (i,j) fuzzy α' CO and $\lambda \leq \delta_1$. Now, it is claim that $\delta_1 \bar{q} (\mu \vee \delta)$. If $\delta_1 q (\mu \vee \delta)$ then there exists a point $x \in X$ such that $\delta_1(x) + (\mu \vee \delta)(x) > 1$. This implies that $\delta_1 q \mu$ or $\delta_1 q \delta$, a contradiction. Hence (X, τ_1, τ_2) is not pairwise fuzzy α'-connected between λ and $\mu \vee \delta$.

Property 5.2.7 A fuzzy bitopological space (X, τ_1, τ_2) is pairwise fuzzy α'-connected if and only if it is pairwise fuzzy α'-connected between every pair of its non-zero fuzzy sets.

Proof: Necessity: Let λ and μ be any pair of non-zero fuzzy sets of (X, τ_1, τ_2). Suppose (X, τ_1, τ_2) is not pairwise fuzzy α'-connected between the fuzzy sets λ and μ. Then there is an (i,j)-fuzzy α' CO set δ in (X, τ_1, τ_2) such that $\lambda \leq \delta$ and $\delta \bar{q} \mu$. Since λ and μ are non-zero it follows that δ is a non-zero proper (i,j)-fuzzy α' CO set. Hence (X, τ_1, τ_2) is not pairwise fuzzy α'-connected.

Sufficiency: Suppose (X, τ_1, τ_2) is not pairwise fuzzy α'-connected. Then there exists a non zero proper (i,j) fuzzy α' CO set δ on X. Consequently, (X, τ_1, τ_2) is not pairwise fuzzy α'-connected between δ and $1-\delta$, a contradiction.
Property 5.2.8 Let \((Y, (\tau_1)_Y, (\tau_2)_Y)\) be a subspace of fuzzy bitopological space \((X, \tau_1, \tau_2)\) and let \(\lambda, \mu\) be fuzzy set of \(Y\). If \((X, \tau_1, \tau_2)\) is pairwise fuzzy \(\alpha^c\)-connected between \(\lambda\) and \(\mu\) and \(\chi_Y\) is bifuzzy \(\alpha^c\) in \((X, \tau_1, \tau_2)\) then \((Y, (\tau_1)_Y, (\tau_2)_Y)\) is pairwise fuzzy \(\alpha^c\)-connected between \(\lambda\) and \(\mu\).

Proof: Suppose \((Y, (\tau_1)_Y, (\tau_2)_Y)\) is not pairwise fuzzy \(\alpha^c\)-connected between \(\lambda\) and \(\mu\) then there exists an \((i, j)\)-fuzzy \(\alpha^c\) set \(\delta\) in \(Y\) such that \(\lambda \leq \delta\) and \(\delta \subseteq \mu\). Since \(\chi_Y\) is bifuzzy \(\alpha^c\) and bifuzzy \(\alpha^c\) closed in \((X, \tau_1, \tau_2)\), \(\delta\) is \((i, j)\) fuzzy \(\alpha^c\) in \((X, \tau_1, \tau_2)\). Therefore \((X, \tau_1, \tau_2)\) is not pairwise fuzzy \(\alpha^c\)-connected between \(\lambda\) and \(\mu\). Hence the proof.

Property 5.2.9 Let \((Y, (\tau_1)_Y, (\tau_2)_Y)\) be a subspace of fuzzy bitopological space \((X, \tau_1, \tau_2)\) and let \(\lambda, \mu\) be fuzzy set of \(Y\). If \((Y, (\tau_1)_Y, (\tau_2)_Y)\) is pairwise fuzzy \(\alpha^c\)-connected between \(\lambda\) and \(\mu\) then \((X, \tau_1, \tau_2)\) is also pairwise fuzzy \(\alpha^c\)-connected between \(\lambda\) and \(\mu\).

Proof: Proof is similar to that of property 5.2.8.

5.3 CONCLUSION

The concept of pairwise fuzzy \(\alpha^c\)-connectedness between fuzzy sets is introduced and some interesting properties are investigated in this chapter.