REFERENCES


ATSDR. (2001), Toxicological Profile for MethylParathion, Agency for Toxic Substances and Disease Registry, Atlanta USA.


Cho, T. M. (2001), Bioremediation of organophosphorus neurotoxicity and genotoxicity in vitro by organophosphorus hydrolase, PhD diss., College Station, Texas A&M University.


Fusarium mutant reduced in cutinase activity and virulence, J Bacteriol., 168:
911-916.
Daughton, C. G. and Hsieh, D.P. (1977), Parathion utilization by bacterial symbionts in
organophosphate hydrolase in the filamentous fungus Gilocladium virens, Appl.
David C. C. Yao and Haag W. R. (1991), Rate constants for direct reactions of ozone
Davis, R. F., Johnson, A.W. and Wauchope, R. D. (1993), Accelerated degradation of
fenamiphos and its metabolites in soil previously treated with fenamiphos, J
De La Rochebrochard d’Auzay, S., Brosillon, S., Fourcade,F. and Amrane, A. (2007),
dimethoate degradation in Pseudomonas aeruginosa MCMB-427, Lett Appl
DeWaard, M. A. (1974), Mechanism of action of the organophosphorus fungicide
Dick, R. E. and Quinn, J. P. (1995), Glyphosate-degrading isolates from environmental
samples: occurrence and pathway of degradation, Appl Microbiol Biotechnol.,


Evans, F.L. (1972), Ozone in Water and Wastewater Treatment, Ann Arbor, MI: Ann


Hong, M. S. (1997), Bioremediation and neurotoxicological characterization of organophosphorus compounds. PhD diss. College Station, Texas A&M University. Department of Chemical Engineering.


Hong, S. B. and Raushel, F. M. (1996), Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase, Biochemistry, 35: 10904-10912.


Kimura, M. (1980), A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.,
16: 111-120.
approach for optimizing removal of Cr (VI) from aqueous solution using
Klimek, M., Lejck, B., Kafarski, P. and Forlani, G. (2001), Metabolism of the
phosphonate herbicide glyphosate by a non-nitrateutilising strain of Penicillium
Kotronarou, A., Mills, G. and Hoffmann, M.R. (1991), Ultrasonic irradiation of p-
Krishna, K. R., Philip, L. (2008), Biodegradation of lindane, methyl parathion and
carbofuran by various enriched bacterial isolates. J Environ Sci Health B.,
Krzysko-Lupicka, T., Stroff, W., Kubs, K., Skorupa, M., Wieczorek, P., Lejczak, B., and
Kafarski, P. (1997), The ability of soil borne fungi to degrade
organophosphonate carbon-to-phosphorus bonds, Appl. Environ. Microbiol., 48:
549-552.
Kullman S.W. and Matsumura F. (1996), Metabolic Pathways Utilized by
Phanerochaete chrysosporium for Degradation of the Cyclodiene Pesticide


Liu, Y. H., Chung, Y. C. and Xiong, Y. (2001), Purification and characterization of a
dimethoate degrading enzyme of Aspergillus niger ZHY256, isolated from
Purification and characterization of a novel organophosphorus pesticide
hydrolase from Penicillium lilacinum BP303, Enzyme. Microbial. Technol., 34:
297-303.
Malghani, S., Chatterjee, N., Hu, X. and Zejiao L. (2009), Isolation characterization of a
Mallic, K., Bharati, K., Banerji, A., Shakil, N. A. and Sethunathan, N. (1999), Bacterial
degradation of chlorpyrifos in pure culture and in soil, Bull. Environ. Contam.
Toxicol., 62: 48-54.
Margesin, R. and Schinner, F. (1997), Effect of temperature on oil degradation by a
psychrotrophic yeast in liquid culture and in soil, FEMS Microbiol., Ecol 24:
243-249.
Marinho, G., Rodrigues, K., Araujo, R., Pinheiro, Z. B. and Marinho Silva, G. M.
(2011), Glucose effect on degradation kinetics of methyl parathion by
filamentous fungi species Aspergillus niger AN400, Eng Sanit Ambient, 16(3):
225-230
Martin, M., Mengs, G., Plaza, E., Garbi, C., Sanchez, M., Gibello, A., Gutierrez, F. and
Ferrer, E. (2000), Propachlor removal by Pseudomonas strain GCH 1 in an
Mathur, S. C. (1999), Future of Indian pesticides industry in next millennium. Pesticide
information, 24 (4): 9-23.
Matsumura, F. and Boush, G. M. (1966), Malathion degradation by Trichoderma viride


Roodveldt, C., and Tawfik, D. S. (2005b), Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily, Biochemistry, 44:12728–12736.


Sampaio, G. M. M. S. (2005), *Remoção de metil paration e atrazina em reatores com fungos*. Tese (Doutorado em Hidráulica e Saneamento) Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos.


Supak, J. M. (1990), Genetically engineered pesticide biodegradation by *Gliocladium virens*, M.S. Thesis., Texas A & M University, College Station.


Survey, U.S.G. (2010), Organophosphorus pesticides occurrence and distribution in surface and ground water of the United States, Available online:

Tchelet, R., Levanon, D., Mingelrin, D. and Henis, Y. (1993), Parathion degradation by a *Pseudomonas* sp. and a *Xanthomonas* sp. and by their crude enzyme extracts as affected by some cations, Soil Biol Biochem., 25: 1665–1671.


Tsiropoulos, N. G., Lykas, D. T. and Karpouzas, D. G. (2005), Liquid chromatographic determination of fosthiazate residues in environmental samples and application of the method to a fosthiazate field dissipation study, J AOAC Inter., 88 (6): 1827-1833

U.S. EPA. (2010), Pesticides and food: Why children may be especially sensitive to pesticides, Available online: http://www.epa.gov/pesticides/food/pest.htm


www.epa.gov/oppbead1/pestsales/97pestsales/table3.htm


Zhang C. and Bennett G.N. (2005), Biodegradation of xenobiotics by anaerobic bacteria,


