CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION TO OPTICAL DATA STORAGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Replicable and Removable</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Towards Digital Video Recording</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.3 Optical Data Storage Principles</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1.4 Commercial Media</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.4.1 Data Density and Spot Size</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1.4.2 Thermal Recording</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1.5 Laser Sources</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1.6 Performance</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1.7 Future Systems</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>1.8 Near-Field Optical Data Storage</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.8.1 Aperture Probes for Near-Field Light</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1.8.2 Near-Field Heads for Ultra-large Recording Capacity</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>1.8.3 Near-Field Light Concentration by Controlling Polarization</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1.9 Near - Field Optical Recording Using SIL</td>
<td>31</td>
</tr>
</tbody>
</table>
1.10 Approaches to increased areal density
 1.10.1 Short wavelength lasers
 1.10.2 Increased numerical aperture

II THEORETICAL ASPECTS OF NEAR-FIELD OPTICAL DATA STORAGE

2.1 Filed structure in a homogenous focal region
2.2 Scalar approximation for a homogenous focal region
2.3 Vectorial solution for a homogenous focal region

III INTRODUCTION TO BESSEL BEAM

3.1 Principles of Axicon
3.2 Axicon Design
 3.2.1 Design for Coherent Light
3.3 Different Kinds of Axicons
 3.3.1 Fourier Transform of an Annulus
 3.3.2 Refractive and Reflective Cone Axicons
 3.3.3 Lens Axicons
 3.3.4 Linear Axicons
 3.3.5 Diffractive Axicons

IV GENERAL THEORY OF NON-PARAXIAL BESSEL BEAMS

4.1 Description of the field
4.2 The power balance of the central core
4.3 An analytical paraxial approximation
4.3.1 Spatial – frequency spectrum of field behind the axicon illuminated by a Gaussian beam 68
4.3.2 Free- space propagation 71
4.3.3 Description of the field distribution near the z- axis 72
4.3.4 Description of the field outside the vicinity of z- axis 74

V EVANESCENT BEAMS

5.1 Total Internal Reflection 79
5.2 Vector Bessel Beam 82
 5.2.1 Types of Bessel beams 84
5.3 Evanescent Bessel beams 89
5.4 Numerical study on the Near- Field Optical Virtual Probe Generated by Solid Immersion Axicon (SIAX) 90
 5.4.1 Results and Discussion 96

VI DESIGN OF LENS AXICON FOR NEAR-FIELD OPTICAL RECORDING

6.1 Generation of sub-wavelength and super-resolution longitudinally polarized non- diffraction beam using Lens Axicon 100
 6.1.1 Results and Discussion 103
6.2 Adjustable generation of high resolution optical virtual probe using Lens Axicon 108
 6.2.1 Results and Discussion 111

VII GENERATION OF NANO SCALE BESSEL BEAM USING DIFFRACTIVE AXICON

7.1 Design of diffractive axicon 120
7.2 Stationary phase analysis 124
VIII GENERATION OF NANOSCALE BESSSEL BEAM USING LENS AND CUBIC PHASE PLATE

8.1 Extending Depth of Focus using cubic phase plate 134
8.2 Derivation of the Cubic Phase Function 136
 8.2.1 Paraxial Model 136
8.3 Extending the depth of focus of the Nanoscale Beam using Symmetrically Cubic Phase Plate 137
8.4 Uniform Intensity Axicon 139
8.5 Results and Discussion 142

IX COMPARATIVE STUDY ON FOCAL PERFORMANCE OF ENDED LENS AND FIBER ENDED AXICON FOR OPTICAL RECORDING

9.1 Focusing properties of hemispherical-shaped fiber lens 153
9.2 Focusing properties of fiber ended Axicon 158
9.3 Numerical calculations 161
9.4 Results and discussion 164

X SUMMARY 170

REFERENCES

APPENDIX - I