CHAPTER I
INTRODUCTION AND SURVEY OF LITERATURE

1.1 Introduction

Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. It incorporates elements of applied physics and chemistry. With significant media attention focused on nanoscience and nanotechnology in recent years, materials science has been propelled to the forefront all over the world. Materials science also deals with fundamental properties and characteristics of materials.

Solid state chemistry is concerned with the synthesis, structure, properties and application of solid materials. The materials are usually inorganic, organic and semioorganic materials also find wide applications. The materials of interest are usually crystalline, but some aspects of glasses are also very relevant to solid state chemistry [1].

A crystal or crystalline solid is a solid material whose constituent atoms, molecules or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions. The scientific study of crystals and crystal formation is known as crystallography. The process of crystal formation via mechanisms of crystal growth is called crystallization. The word *crystal* is derived from the ancient Greek word *krustallos* meaning both “ice” and “rock crystal”.

In an ideal crystal, the atomic arrangement is perfectly regular and continuous throughout. Thus an ideal crystal is a perfect one in all respects. But real crystals, as in casts or welded objects are never perfect; lattice distortions and various imperfections, irregularities or defects are generally present in them. The mechanical, electrical and magnetic properties of engineering crystalline solids particularly metals and alloys are profoundly affected by the imperfections in the crystal [2]. All crystalline solids have their own characteristic X-ray powder diffraction pattern which may be used as a means of “fingerprinting”.
1.2 Crystallization

Crystallization is the formation of solid particles within a homogeneous phase. It may occur,

1. as the formation of solid particles in vapour [e.g. as in snow]
2. as solidification from a liquid melt [e.g. freezing of water to ice and crystallization from liquid solution]. Crystallizations from solution is important industrially as the varieties of materials that are marketed are in the crystalline form.

Crystallization occurs in two steps. The first step in the crystal formation is a process called nucleation. The second step is crystal growth. The driving potential for both steps is super-saturation and neither nucleation nor growth will take place in unsaturated solution.

The crystallization process consists of two major events, nucleation and crystal growth. Nucleation is the step where the solute molecules dispersed in the solvent start to gather into clusters, on the nanometer scale (elevating solute concentration in a small region), that become stable under the current operating conditions. These stable clusters constitute the nuclei. However, when the clusters are not stable, they redissolve. Therefore, the clusters need to reach a critical size in order to become stable nuclei. Such critical size is dictated by the operating conditions (temperature, supersaturation, etc.). It is at the stage of nucleation that the atoms arrange in a defined and periodic manner that defines the crystal structure. "Crystal structure" refers to the relative arrangement of the ions or molecules and atoms.

The crystal growth is the subsequent growth of the nuclei that succeed in achieving the critical cluster size. Nucleation and growth continue to occur simultaneously while the supersaturation exists. Supersaturation is the driving force of the crystallization; hence the rate of nucleation and growth is driven by the existing supersaturation in the solution. Depending upon the conditions, either nucleation or growth may be predominant over the other and as a result, crystals with different sizes and shapes are obtained. Once the supersaturation is exhausted, the solid-liquid system reaches equilibrium and the crystallization is complete, unless the operating conditions are modified from equilibrium so as to supersaturate the solution again.
1.3 Factors affecting the shape of growing crystals

The following factors have the greatest effect on the shape of the crystals.

1. **Concentration currents**

 The concentration currents strongly influence the shape of growing crystal. If the growing crystal is at the bottom of the vessel, the concentration currents tend to make it flat. If the growing crystal is suspended, the concentration currents tend to elongate it. The effect of the concentration currents can be eliminated by rotating the crystal about a horizontal axis or by shaking the crystallizer flask.

2. **Impurities in solution**

 Impurities often strongly affect the crystal shape. A classic example is the introduction of carbamide into a solution of sodium chloride. Without the addition of carbamide, sodium chloride crystallizes in cubes. Sodium chloride crystallizes in the presence of carbamide with octahedral shape.

3. **Effect of temperature**

 Temperature variations often cause faces to appear which would never be formed under normal conditions of growth.

4. **Viscosity of the solution**

 If the viscosity is high enough, it will prevent the formation of concentration currents. Then, the crystals will be able to grow only through diffusion or supersaturation, which has a peculiar effect on the shape of the growing crystals.

 Many compounds have the ability to crystallize with different crystal structures, a phenomenon called polymorphism. Each polymorph is in fact a different thermodynamic solid state and crystal polymorphs of the same compound exhibit different physical properties, such as dissolution rate, shape and melting point, etc. For this reason, polymorphism is of major importance in industrial manufacture of crystalline products.

1.4 **Charge transfer complex**

 A charge-transfer complex (CT complex) or electron donor-acceptor complex is an association of two or more molecules or of different parts of one very large molecule, in which a fraction of electronic charge is transferred between the molecular entities. The resulting electrostatic attraction provides a stabilizing force for
the molecular complex. The source molecule from which the charge is transferred is called the electron donor and the receiving species is called the electron acceptor.

The nature of the attraction in a charge-transfer complex is not a stable chemical bond and is thus much weaker than covalent forces. The attraction is created by an electronic transition into an excited electronic state and is best characterized as a weak electron resonance. The excitation energy of this resonance occurs very frequently in the visible region of the electro-magnetic spectrum, which produces the usually intense colour characteristic for these complexes. These optical absorption bands are often referred to as charge-transfer bands (CT bands). Optical spectroscopy is a powerful technique to characterize charge-transfer bands.

Proton or electron transfer complexes play an important role in the field of magnetic, electrical conductivity and optical properties. Generally, the CT complexes are being regarded materials for use as organic semiconductors and superconductors whose electronic properties depend strongly on the packing of the donor radical cation. They can also be used as corrosion inhibitors and micro-emulsion. In addition, the CT complexes have been found with wide application in biological field. The CT-interactions between aromatic electron acceptors and electron donors containing nitrogen, oxygen or sulphur atoms have attracted increased interest over the last two years because of this type of interactions play the important role in the field of drug-receptor binding mechanism. The proton transfer from organic acid to amines may take place readily with very low activation energy in contrast with the attack of the amine to the carbonyl carbon leading to amide formation.

1.5 Nonlinear optical (NLO) property

Crystals are classified into two categories, namely, single crystals and polycrystals. A single crystal is constructed by the infinite repetition of identical structural units. In simplest crystals like copper, the structural unit is a single atom. The most commonly experienced interactions of light with matter such as refraction, reflection and diffraction occur in the linear domain. This is to say, the magnitude of observed effect changes linearly with light intensity. Most optical nonlinear responses were not demonstrated until the advent of laser. Nonlinear optics is the properties of light in media in which the polarization responds nonlinearly to the electric field. Nonlinearity is the behavior of a circuit, particularly an amplifier, in which the
output signal strength does not vary in direct proportion to the input signal strength. In a nonlinear device, the output-to-input amplitude ratio (also called the gain) depends on the strength of the input signal. The rapid development of optical communication system has led to a demand for nonlinear optical (NLO) materials of high performance for their use as components in optical devices. NLO materials are also used in frequency conversion, which is a popular technique for extending the useful wavelength range of lasers. The hunt for newer materials is on and materials of utility in this direction are being explored all over the world.

The search for nonlinear optical materials began soon after the demonstration of second harmonic generation (SHG) of light in quartz by Franken et al. [3] in 1961. The thirst for the development of the other materials with superior optical quality and improved nonlinear properties soon led to the discovery of a number of early materials including ammonium dihydrogen phosphate (ADP), potassium dihydrogen orthophosphate (KDP), lithium niobate (LiNbO₃) and lithium triborate (LBO). These crystals played an important role in the establishment of nonlinear optics as a major area of laser science. Subsequently, intensive efforts were expended and continued even today in search for newer and better nonlinear optical materials.

Kurtz and Perry powder method was introduced in late 1960s. As the method was simple, rapid and less time consuming in screening NLO materials, the stage was set for a rapid introduction of newer materials both inorganic and organic. Second order nonlinear optical materials are used in optical switching (modulation), frequency conversion and electro-optic applications. All these applications rely on the manifestation of the molecular hyperpolarizability of the materials. Inorganic materials are much more matured in their applications to second order NLO than organics. Most commercial materials are inorganic especially for high power use. However, organic materials are perceived as being structurally more diverse and are, therefore, believed to have more long term promise than inorganic materials [4]. The nonlinearity of organic compounds having a π-electron conjugated system is caused by nonlinear polarization that occurs due to the interaction between laser light which comprises a strong electromagnetic wave and the delocalized π-electrons in the organic molecule of interest.
1.6 Phase transitions

A given assembly of atoms or molecules may be homogeneous or non-homogeneous. The homogeneous parts of such an assembly, called phases, are characterized by thermodynamic properties like volume, pressure, temperature and energy. An isolated phase is stable only when it has minimum free energy for the specified thermodynamic conditions. As the temperature, pressure or any other variable like an electric or magnetic field acting on a system is varied, the free energy of the system changes smoothly and continuously. Whenever such variations in free energy are associated with changes in structural details of the atomic or electronic configurations, a phase transformation or phase transition is said to occur. Here, these two terms are treated as synonymous. This process of transformation from one polymorph to another is called phase transition. The term phase transition is restricted to changes in structure only without any change in composition. Phase transitions are exhibited by a wide variety of systems ranging from metals and alloys to complex organic and inorganic materials. The subject of phase transitions is not only of great academic interest but also of technological importance.

Phase transitions are classified into first order and second order based on the changes in thermodynamic quantities such as entropy, heat capacity, volume etc. on passing from one polymorph to the other [5]. The classical Clapeyron equation satisfactorily predicts the features of first order phase transitions. A first order transition is said to occur when there is discontinuity in the first derivatives of free energy with respect to temperature and pressure. These derivatives are related to entropy and volume as follows:

\[
\frac{dG}{dT} = -S \quad \text{and} \quad \frac{dG}{dP} = V,
\]

where \(dG\) = derivative free energy, \(V\) = volume,
\(S\) = entropy, \(dT\) = derivative temperature and \(dP\) = derivative pressure

A discontinuity in volume corresponds to a change in crystal structure as the density and the unit cell volume per formula unit is different in the two polymorphs. A change in volume is associated with a change in enthalpy, \(\Delta H\). This change may be detected by differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Exothermic and endothermic peaks indicate phase transitions. First order phase transitions are associated with considerable hysteresis. Hysteresis effects are often used to characterize the ‘order’ of a transition.
Second order phase transitions take place when there are discontinuities in the second derivatives of the free energy with respect to temperature and pressure i.e., change in heat capacity (Cp), thermal expansion (α) and compressibility (β). Thus the distinction between first order and second order transitions is based on thermodynamic principles. In the case of λ-transitions (often grouped with second order transitions), the heat capacity tends towards infinity at the transition temperature giving the appearance of a λ-shaped Cp-temperature curve.

1.7 Picric acid

Picric acid (2,4,6-trinitrophenol) is an organic acid, which is used, in dyeing industries and as an explosive. This yellow crystalline solid is one of the most acidic phenols. Picric acid has been used extensively in solid-state studies as both an anion and/or a strong electron-accepting molecule in charge transfer complexes.

Picric acid forms crystalline picrates of various organic molecules through ionic and hydrogen bonding and π-π interactions. It is known that picric acid acts not only as an acceptor to form various π stacking complexes with other aromatic molecules but also as an acidic ligand to form salts through specific electrostatic or hydrogen bond interactions.

In recent years, an intense worldwide effort has been focused on the design and development of highly efficient organic NLO materials [6]. The nonlinearity of picrate compounds having a π-electron conjugated system is caused by nonlinear polarization that occurs due to the interaction between laser light which comprises a strong electromagnetic wave and the delocalized electrons in the organic molecule of interest. In addition, picric acid is extensively used for human therapy such as treatment of burns, antiseptic and astringent agent [7]. Moreover, it is well-known picric acid is an organic nonlinear optical crystal due to its shorter cutoff wavelength, optical quality, sufficiently large nonlinear coefficient, transparency in UV region and high damage threshold [8]. Several complexes or salts of the picric acid with organic molecules exhibit nonlinear optical applications [9]. Realising the importance of picrate complexes from the foregoing discussion, the research work was undertaken to synthesize some organic picrate complexes. The complexes were characterized by thermal, spectral, antimicrobial and NLO studies.
SURVEY OF LITERATURE

Picric acid has a tendency to form stable picrate compounds with various organic molecules due to the presence of active electron cloud and ionic bonds [10]. In the past two decades, organic nonlinear optical (NLO) picrate crystals have attracted the scientists and technologists due to their potential applications in the area of photonics including optical information processing [11-14], high-energy lasers for inertial confinement fusion research, colour display, electro-optic switches, frequency conversion, etc. [15]. The organic picrate compounds exhibit larger NLO response than inorganic materials due to the presence of active π-bonds. However, these materials have poor mechanical strength, thermal stability, laser damage threshold, etc., than the inorganic materials. As the organic materials possess prominent NLO properties, new organic NLO materials are synthesized and characterized. A detailed survey of literature on picrate crystals are presented in this chapter.

Paula Zaderenko et al. [16] studied the crystal structure of the diethyl 2-benzimidazol-1-ylsuccinate-picrate. The structure of the crystal was determined by single crystal X-ray diffraction analysis. The X-ray diffraction analysis indicated that the compound belonged to orthorhombic crystal system with Pna2₁ space group. Cross Polarization and Magic Angle Spinning (CP/MAS) and solid NMR studies showed that the picric acid linkage depends on the nature of the azole group.

Neodymium and europium 3-picoline-N-oxide picrate complexes were synthesized by Freitas Nunes et al. [17]. Single crystal X-ray diffraction method indicated that the synthesized Eu complex crystallized in triclinic system with space group P1. The emission spectrum of the complex showed the existence of two different Eu(III) coordination environments.

The crystal structure, IR absorption spectra, emission spectrum of the europium compound, TG and DSC analyses of lanthanide 4-methylmorpholine N-oxide picrate complexes were reported by Fernandes at el. [18]. The grown crystals crystallized in triclinic crystal systems with P1 space groups as determined by single crystal X-ray analysis. Thermal analysis showed that the Eu(III) crystal was thermally stable up to 300°C.

Szumna et al. [19] synthesized the 1,5-diamino-3-oxapentane, 1,8-diamino-3,6-dioxaoctane and 1,5-diamino-3-azapentane picrate complexes. The crystal
structures of the crystals were characterized by single crystal X-analysis. The synthesized crystals crystallized in monoclinic systems with $P2_1/c$ space groups. The FTIR and UV spectral characterizations were also carried out.

Terbium(III), holmium(III) and erbium(III) picrate complexes were characterized by Cardoso et al. [20]. The single crystal X-ray diffraction study revealed that the Tb compound belonged to triclinic crystal system with $P \bar{1}$ space group. TG analyses indicated that the water molecules eliminated followed by decomposition of picrates.

The 1:1 and 2:1 picrate complexes of N-methylmorpholine betaine were prepared and their structures determined by single crystal X-ray diffraction method by Dega-Szafran et al. [21]. The single crystal X-ray diffraction study indicated that the crystal systems of the 1:1 and 2:1 complexes were orthorhombic, Pbca space group and monoclinic, $P2_1/c$ space group respectively. The FTIR and NMR spectra were also discussed.

Hydrated Sc(III) picrate compound was prepared by Sanchez et al. [22]. The compound crystallized in monoclinic system with $C2/c$ space group. The luminescence, phosphorescence and excitation spectra were also carried out.

Carvalho et al. [23] have reported the unit cell parameters of the 8-Hydroxyquinolinium picrate. The unit cell parameters indicated that the complex crystallized in monoclinic with $P2_1/c$ space group. The symmetry and the number of internal modes were observed in the polarized Raman and infrared spectra.

Hydrated Lanthanide(III) nicotinamide N-oxide picrate complexes were prepared by Bombieri et al. [24]. The structures of Pr, Nd and Tm complexes were established by X-ray crystallography method. The prepared Nd and Tm complexes crystallized in triclinic systems with $P \bar{1}$ space groups. The complexes were also characterized by elemental analysis and IR spectrum.

Giovanni Tauzher et al. [25] studied Ni(II) pseudo-octahedral picrate complexes. The synthesized complexes were analyzed by elemental, FTIR and single crystal X-ray diffraction analyses. The single crystal X-ray analysis indicated that the crystal systems of the compounds were monoclinic with $P2_1/n$ space groups.

The single crystal structures of 2,6-di-t-butyl-picrate (dbpH) and metal substituted 2,6-di-tbutyl-picrate derivatives were reported by Lynch et al. [26]. The
SHG study results indicated that the dbpH was non-centrosymmetric and an ungraded powder sample exhibited SHG optical intensity five times greater than that of ungraded urea sample. The single crystal X-ray diffraction method showed that the compounds belonged to monoclinic systems with P2\textsubscript{1}/c space groups.

The crystalline salt of prolinium picrate was studied by Zhi Min Jin et al. [27] and characterized by FTIR and X-ray crystallography analyses. The single crystal X-ray diffraction method revealed that the crystal system of prolinium picrate was orthorhombic with P\textsubscript{2}1\textsubscript{2}1\textsubscript{2}1 space group.

El-Medani et al. [28] synthesized the 1:1 picrate (PA) complexes of 2-aminobenzimidazole (ABZ) and trinitrobenzene (TNB). The crystal structures of the complexes were determined by single crystal X-ray diffraction method. The ABZ-PA complex crystallized in triclinic system with P\textsubscript{2}1 space group, while the TNB-PA adduct crystallized in monoclinic system with P2\textsubscript{1}/c space group.

Solid complexes of lanthanide picrates were prepared by Ya-Wen Wanga et al. [29]. The grown crystals were characterized through elemental, FTIR, 1H NMR and single crystal X-ray diffraction techniques. The single crystal X-ray analysis indicated that the synthesized crystal belonged to monoclinic system with P2\textsubscript{1}/c space group.

It is almost a well proven fact by both theory and experiment that to possess good second harmonic generation efficiency, the material should have a non-centrosymmetric crystalline structure. However, there are some reports available in the literature establishing the fact that the centrosymmetric crystals [30,31] or films [32] can also exhibit NLO properties. A centrosymmetric crystal can be made into a SHG active material with lesser number of defects [33].

An organic molecule should have high second order hyperpolarizability (β) to exhibit large NLO properties. The hyperpolarizability can be enhanced by increasing intermolecular charge transfer interaction by extending \(\pi\)-conjugated system [34,35]. Most of the complexes of picric acid encourage acentric packing which results in large hyperpolarizability (β) and remarkable second order NLO activity (\(\chi^2\)) [36].

Dega-Szafran et al. [37] have reported the picrate complexes of 1-piperidiniumacetate and 1-piperidiniumacetic acid. The complexes crystallized in monoclinic systems with P2\textsubscript{1}/c space groups and \(Z = 4\). The presence of protonated
1-piperidineacetic acid and its zwitterion in the crystal were confirmed by 13C CP/MAS NMR and solid state FTIR spectral analyses.

Anitha et al. [38] have reported crystal structure of L-Asparazinium picrate. The single crystal X-ray analysis indicated that the compound belonged to monoclinic system with $P2_1/c$ space group.

The supramolecular chemistry and crystal structures of two concomitant polymorphs of betaine and imidazole picrate complexes were studied by MacDonald et al. [39]. The single crystal X-ray diffraction data showed that the crystal systems of the betaine and imidazolinium picrates were triclinic, $P\overline{T}$ space group and monoclinic, $C2/c$ space group respectively.

Pragati Agnihotri et al. [40] have studied the dibenzo-30-crown-10 potassium picrate crystal. The synthesized crystal crystallized in monoclinic system with $C2/c$ space group. The UV-visible and NMR spectra were also studied to confirm the molecular structure of the crystal.

Solid complexes of Pr and Nd picrates with a new amide type tripodal ligand, 2,2’,2’’ nitrilotris-(N-phenylmethyl)-acetamide were prepared by Yu Tang et al. [41]. The single crystal X-ray diffraction analysis indicated that the Pr and Nd compounds crystallized in monoclinic systems with $P2_1/n$ space groups. The luminescent property of the Eu (III) complex was also described.

Charge-transfer complexes of 2,2-bipyridine picrate and chloranilate were reported by Said Teleb et al. [42]. The elemental, NMR and photometric titration results indicated that the complex was formed in 1:1 molar ratio. The formation constants of the complexes were shown to be dependent on the structure of the electron acceptors used.

Chuan-Ming Jin et al. [43] have investigated the energetic mono and bridged imidazolium, triazolium, tetrazolium picrates and the dipicrates. The structures of tetrazolium picrates were determined by single crystal X-ray diffraction analysis. The grown triazolium and tetrazolium picrates crystallized in orthorhombic system, Pbcn space group and monoclinic system, $C2/c$ space group respectively. The thermal study indicated that the grown picrates were thermally stable up to 176ºC.

Solid complexes of biphenyl, N-benzyl-2-{20-[(benzyl-methyl-carbamoyl)-methoxy]-biphenyl-2-yloxy}-N-methyl-aceamide lanthanide picrates were studied by
Kuan-Zhen Tang et al. [44]. The crystal systems of the complexes were triclinic with $P\bar{1}$ space groups.

Briget Mary et al. [45] have studied a comparative study of infrared and Raman spectra of dl-valine dl-valinium and dl-methionine dl-methioninium picrates at room temperature. The structures of these picrates were determined by single crystal X-ray diffraction method.

The FTIR and laser Raman spectra of β-alanine β-alaninium and dl-phenylalanine dl-phenylalaninium picrate crystals were reported by Briget Mary et al. [46]. The single crystal X-ray analysis indicated that the grown crystals were crystallized in triclinic systems with $P1(Ci)$ space groups. Fermi resonance was also observed for one of the crystal β-alanine β-alaninium picrate.

Good quality single crystal of L-Asparaginium picrate was grown by Srinivasan et al. [47]. The relative SHG efficiency of the material was 66.5 times greater than that of KDP and 10 times greater than that of urea. The single crystal X-ray analysis revealed that the crystal system of the compound was monoclinic with $P2_1$ space group. The dielectric and mechanical behaviours of the specimen were also studied.

Density functional theory calculation of crystalline potassium picrate was performed by Xue-Hai et al. [48]. The grown crystal was characterized by band structure, lattice energy calculation and single crystal X-ray diffraction techniques. The X-ray diffraction study indicated that the compound belonged to monoclinic crystal system with $P2_1/c$ space group. The value of band gap energy for the crystal was 3.29 eV.

Sock-Sung Yun et al. [49] have synthesized Ln(III) and Tb picrate complexes. The X-ray diffraction method showed that the crystal systems of the complexes were triclinic with $P\bar{1}$ space groups. The TG-DTG and DSC thermal analyses revealed that the lanthanide complexes were thermally decomposed in three distinctive stages between 140ºC and 560ºC.

The tetraprotonated octaaminocryptand and triprotonated octaaminocryptand picrate complexes were studied by Ravikumar et al. [50]. The synthesized compounds were examined crystallographically and results indicated that the complexes
crystallized in monoclinic system, $C2/c$ space group and triclinic system, space group $P\bar{1}$ respectively. Thermal analysis of the compounds was also carried out.

Krishnakumar et al. [51] studied the nonlinear optical property of 8-hydroxyquinoline picrate. The crystal belonged to monoclinic system with $P2_1/c$ space group. The good transparency was confirmed by optical transmittance studies. The FTIR, polarized Raman and third order nonlinear optical property were also studied.

Solid complexes of lanthanide biphenyl derivative picrates were prepared by Yan-Ling Guo et al. [52] and characterized by elemental, conductivity measurement, FTIR, single crystal X-ray diffraction and electronic spectroscopic studies. The single crystal X-ray analyses showed that the crystallized in triclinic crystal system with $P\bar{1}$ space group.

Chandramohan et al. [53] have synthesized the single crystals of cafféinium picrate. Single crystal X-ray analysis revealed that the crystal system of the material was monoclinic system with centrosymmetric $P2_1/n$ space group. The emission of green radiation by the complex confirmed that the material can be used as a NLO material. The thermal study indicated that the complex was thermally stable up to 142°C.

The synthesis of l-oxo-bis[nitrato dimethyl tellurium(IV)] (1), l-oxo-bis[(2,4,6-trinitro) phenolate dimethyl tellurium(IV)] (2) and l-oxo-bis[1-(2,4,6-trinitro)phenolato-1,2,3,4,5-hexahydropyrurophene] (3) picrates were reported by Srivastava et al. [54]. The X-ray diffraction method indicated that the compounds 1, 2 and 3 crystallized in monoclinic $C2/c$ space group, monoclinic $P2_1/c$ space group and tetragonal P_4C_2 space group respectively. The UV-Vis, FT-IR, (1H, 13C) NMR spectral analyses were also reported.

Senthilkumar et al. [55] investigated the infrared and Raman spectra of L-valinium picrate at room temperature. The single crystal X-ray diffraction of the crystal data showed that the crystal system of the compound was monoclinic with $P2_1$ space group. The various functional groups were confirmed by spectral analyses.

The selectivity factor and coordination behaviour of Lanthanum(III) picrates were studied by Saleh et al. [56]. The structures of the complexes were studied by single crystal X-ray diffraction analysis. The La-Gd picrate complexes crystallized in
orthorhombic systems with Pbca space groups, while the Ho picrate complex crystallized in triclinic crystal system with \bar{P} space group.

A two-dimensional copper(II) picrate complex was synthesized by Zhi-Qiang Liu et al. [57]. The compound crystallized in monoclinic system with P2$_1$/c space group as confirmed by single crystal X-ray diffraction analysis. The fluorescence titration revealed that the binding mode between the binuclear copper(II) complex and Herring Sperm DNA might be intercalation.

Charge transfer picrate complex, dimethyl-1, 10-phenanthroline picrate was studied by Gaballa et al. [58]. The elemental, IR and photometric titration studies indicated that the complex was formed in 1:1 molar ratio. The grown crystal crystallized in monoclinic system with P2$_1$/n space group.

Uma Devi et al. [59] have grown L-prolinium picrate by temperature reduction method. The SHG efficiency of the crystal was 52 times greater than that of KDP. The single crystal X-ray diffraction technique showed that the grown crystal belonged to monoclinic crystal system with P2$_1$/c space group.

First order hyperpolarizability of L-asparaginium picrate crystal was performed by Srinivasan et al. [60] using density functional theory calculations. The calculated first order hyperpolarizability of L-asparaginium picrate complex was 4.8152×10^{-29} esu.

The crystalline material of acenaphthene picrate was grown by Chandramohan et al. [61]. The unit cell parameters of the compound was calculated and found that the compound belonged to monoclinic system with C2/c space group. The material showed powder SHG efficiency was 0.39 times greater than that of urea.

Moamen Refat et al. [62] have investigated N,N-bis-alkyl derivatives of 1,4,6,8-naphthalenediimide picrate complexes. The photometric titrations of the complexes showed that the complexes were formed in 1:1 molar ratio. The spectral and thermal characterizations were also studied.

The single crystal of naphthalene picrate was synthesized by Chandramohan et al. [63]. Thermal behavior and stability of the crystal were studied using TG-DTA analyses and found that it was stable up to 151°C. The SHG nature of the compound was also studied.
Kirubavathi et al. [64] have synthesized single crystal of L-valinium picrate by slow evaporation solution growth technique. The compound crystallized in monoclinic system with P21 space group. Optical properties of the crystal were confirmed by UV-visible study. The SHG efficiency of the crystal was twice than that of KDP.

Lakshminarayanan et al. [65] have studied the multigram synthesis of an octaaminocryptand picrate complex. The material crystallized in monoclinic crystal system with P21/c space group. The FT-NMR characterization was also carried out to confirm the molecular structure of the compound.

Ferrocene-based ammonium picrate compounds were reported by Petr Stepinka et al. [66]. The SHG efficiency of the complex was measured and its efficiency compared with standard urea. The single crystal X-ray diffraction data revealed that the crystal systems of the compounds were triclinic with P1 space groups. Thermal and spectral characterizations were also carried out.

Bharathikannan et al. [67] have synthesized the organic NLO material, 2-nitroaniline picrate. The thermal stability of the crystal showed that the compound was thermally stable up to 81°C. The emission of green radiation in SHG efficiency study confirmed that the compound can be used as an NLO material. The unit cell parameters of the crystal indicated that the compound crystallized in monoclinic system.

The donor-acceptor methamphetamine picrate complexes were studied by Parvin Shahdousti et al. [68]. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes were calculated. Vertical ionization potential of the donors and electron affinity of acceptors were determined by ab-initio calculation.

The N,N dimethyl anilinium picrate crystal was grown by Chandramohan et al. [69]. The SHG conversion efficiency of crystal was 1.29 times greater than that of urea. The unit cell parameters of the grown complex showed that the compound belonged to monoclinic system. FTIR and 1H NMR spectral studies were also studied to ascertain the molecular structure of the complex.

Several substituted azolium picrate complexes were synthesized by Klapotke et al. [70]. The synthesized complexes were analyzed by using FTIR, NMR and single
crystal X-ray diffraction analyses. The single crystal X-ray diffraction study revealed that the most of the azolinium picrate complexes crystallized in monoclinic crystal systems with $P2_1/c$ space groups and the few complexes crystallized in triclinic systems with $P\overline{1}$ space groups.

L-Valinium picrate crystal was grown by Martin Britto Dhas et al. [71] using slow evaporation method. The single crystal X-ray diffraction analysis showed that the crystal belonged to monoclinic crystal system with $P2_1/c$ space group. The SHG conversion efficiency of the compound was 60 times greater than that of the standard KDP and 8 times greater than that of the standard urea. Microhardness and dielectric studies were also carried out.

Martin Britto Dhas et al. [72] have also studied the L-prolinium picrate complex. The complex crystallized in monoclinic crystal system with $P2_1$ space group. The SHG efficiency of the complex was 74 times greater than that of the standard KDP. The dielectric study indicated that the sample possessed enhanced optical quality with lesser defects.

First order hyperpolarizability (β) value of L-valinium picrate single crystal was studied by Srinivasan et al. [73]. The SHG efficiency of the compound was high when compared to KDP. Planar molecular structure and charge transfer results indicated that the complex possessed larger values of β.

1:1 Glycine picrate crystal was synthesized by Uma Devi et al. [74]. The cell parameters of the complex showed that it crystallized in monoclinic system. Thermal analysis suggested that the crystal exhibited a single sharp weight loss at 214°C. The microhardness study indicated that the crystal was a soft material.

Petrosyan [75] has synthesized the diglycine picrate crystal. The crystal system of the complex was monoclinic with $P2_1/c$ space group. According to his study the diglycine picrate was determined as 2:1 complex not as 1:1 complex.

The crystal structures of 2-amino-4,6-dimethoxypyrimidine and 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium picrates were studied by Kaliyaperumal Thanigaimani et al. [76]. The single crystal X-ray study indicated that the grown crystals belonged to monoclinic crystal systems with $P2_1/c$ space groups.

Qin Wang et al. [77] reported the 20-[(1,2-naphthalene) bis(oxy)] bis[N (phenylmethyl)] acetamide substituted lanthanide picrate complexes. The
grown crystals crystallized in triclinic crystal systems with $P\overline{1}$ space groups as confirmed by single crystal X-ray analysis. The molar conductance and luminescence properties of the complexes were also carried out.

An organic nonlinear optical material, glycine picrate was studied by Uma Devi et al. [78]. Etching study and the low values of dielectric constant with high frequency for the sample suggested that the material can be used in optical devices. The X-ray diffraction data showed that the crystal belonged to monoclinic system with $P2_1/a$ space group. The Z-scan measurements revealed that compound possessed prominent third order nonlinearity.

Good quality single crystal of picrate adduct, tri-nitrophenol methyl p-hydroxybenzoate was grown by Vesta et al. [79]. Single crystal X-ray diffraction analysis showed that the crystal system of the material was triclinic with $P\overline{1}$ space group. Thermal analysis indicated that the sample was stable up to 187°C. Optical absorption study revealed that the compound was well suited for optical applications.

Shakir et al. [80] have studied the remarkable second-harmonic generation efficiency of glycine picrate crystals. The synthesized compound crystallized in centrosymmetric structure. The SHG efficiency of the crystal was 2.34 times greater than that of KDP. The absorption studies showed that the crystal was fully transparent to the green radiation to yield full SHG output. The dielectric and ac-conductivity characterizations were also studied.

Vesta et al. [81] have studied the picrate adduct, tri-nitrophenol p-hydroxyacetophenone. The synthesized crystal belonged to monoclinic system with $P2_1/c$ space group as determined by single crystal X-ray analysis. Thermal analysis showed that the sample was thermally stable up to 135.1°C. The NLO study of the crystal showed that the complex had third order harmonic generation.

1H NMR evidence for the pentaethylene glycol Ln(III) picrate complexes were studied by Eny Kusrini et al. [82]. The single crystal X-ray study showed that the both compounds were isostructural and crystallized in monoclinic systems with $P2_1/c$ space groups. The molar conductance of the complexes indicated that both compounds were ionic in nature. The thermal properties were also studied using TG-DTA analyses.

Shakir et al. [83] have synthesized bulk single crystals of glycine picrate by the slow cooling method. The crystal system of the material was monoclinic with
P2 \textsubscript{1}/a space group. The SHG efficiency of the crystal was 2.34 times greater than that of KDP. The dielectric properties of the complex were also studied.

3,3-Dinitroazetidinium picrate complex was synthesized by Ma et al. [84]. The single crystal X-ray measurement analysis showed that the compound crystallized in orthorhombic system with \textit{P}\textsubscript{2}1\textsubscript{2}1\textsubscript{2} space group. The thermal behaviour of the complex was studied under a non-isothermal condition by DSC and TG-DTG methods. The free radical signals of the complex were detected by ESR technique to estimate its sensitivity.

Eny Kusrini et al. [85] have studied the structure and magnetic properties of triethylene glycol praseodymium picrate complex. The complex belonged to triclinic crystal system with \textit{P}\textsubscript{T} space group. The temperature dependence of the magnetic susceptibility of the complex showed the presence of weak antiferromagnetic interactions between the Pr(III) centres.

The charge transfer complexes of morpholine chlorate and picrate were investigated by Refat et al. [86]. The stability constant of the complexes were increased with high donation of morpholine. The IR, 1H NMR and elemental analyses were also studied. The X-ray crystal structure analysis showed that the synthesized complexes crystallized in triclinic systems with \textit{P}\textsubscript{T} space groups.

The charge transfer complex, \textit{p}-toluidine picrate was studied by Neeti Singh et al. [87]. The spectroscopic and thermodynamic parameters showed that the complex was solvent dependent. The oscillator strengths, ionization potential, transition dipole moments, resonance energies and standard free energies results showed that the complex was stable, exothermic and spontaneous.

Anandhi et al. [88] have reported the growth of single crystals of orthonitroaniline picrate. The single crystal X-ray diffraction data indicated that the crystal system of the compound was monoclinic. The Vicker's microhardness test showed that the complex belonged to soft material. Other characterizations were also carried out.

Anandha Babu et al. [89] reported the single crystal of dimethylammonium picrate. The thermal studies were used to study its thermal properties. The single crystal X-ray diffraction analysis revealed that the crystal crystallized in orthorhombic
system with Pca2 space group. The SHG efficiency of the complex was twice that of standard KDP.

The charge transfer complex, sulfamethoxazole picrate was studied by Refat et al. [90]. The TG-DTG analysis was used to investigate the thermal stability of the compound and found that the compound was stable up to 200°C. The stoichiometry of the complex was 1:1 molar ratio.

The formation of 1:1 hydrogen bonded charge transfer complex, o-phenylenediamine picrate was studied by Khan et al. [91]. The formation constant and molar extinction co-efficient were evaluated by Benesi-Hildebrand equation. The TG-DTA studies showed that the compound was stable up to 198°C. The spectral characterizations were also carried out.

The crystal structure of 2:1 tetramethylpyrazine picrate was studied by Sawka-Dobrowolska et al. [92]. The single crystal X-ray diffraction study revealed that the crystal system of the compound was monoclinic with P2_1/n space group. The spectral and inelastic neutron scattering studies were also characterized.

Huilu Wu et al. [93] have reported a V-shaped 2,6-bis (2-benzimidazolyl) pyridine picrate Mn(II) complex. The DNA-binding properties of the two compounds were investigated by electronic absorption spectrum, fluorescence spectrum and viscosity measurements. The single crystal X-ray diffraction study indicated that the synthesized crystal belonged to monoclinic system with P2_1/c space group.

Charge transfer complex, p-phenylenediamine picrate was synthesized by Khan et al. [94]. The complex exhibited good antifungal and antibacterial activities. The physical parameters of the complex were evaluated by the Benesi-Hildebrand equation. The elemental, spectral, thermal and electronic absorption spectral techniques were also used to characterize the complex.

The single crystal of 1-(diaminomethylene) thiouron-1-iium picrate was grown by Janczak Jan et al. [95]. The compound crystallized in monoclinic system with centrosymmetric C2/c space group. The characteristic bands of the NH_2, NO_2 and C=O groups as well as of skeletal vibration were assigned using FTIR and Raman spectral techniques.

A new and efficient organic nonlinear optical crystal L-threoninium picrate was grown by Natarajan et al. [96]. The structure of the crystal was monoclinic with
non-centrosymmetric space group $P2_1$. The second harmonic generation efficiency of this material was 43 times greater than that of the standard KDP.

The glycine glycinium picrate crystal was reported by Kai et al. [97]. The structure of crystal was monoclinic system with $P2_1/a$ space group. But later Ghazaryan et al. [98] reported the $P2_1/c$ space group instead of $P2_1/a$ space group for the glycine glycinium picrate. No glycine picrates were reported.

The SHG effect for the centrosymmetrical species of diglycine picrate was reported by Ghazaryan et al. [99]. They have concluded that the SHG effect of the centrosymmetrical species was due to impurities of picric acid.

Basoglu et al. [100] have studied the quantum chemical calculations of geometrical structure and vibrational wavenumbers of 8-hydroxyquinolinium picrate. The single crystal X-ray analysis showed that the grown crystal belonged to monoclinic system with $C2_1/c$ space group. Theoretical molecular frontier orbital energies of the compound were calculated.

Vladimir Stilinović et al. [101] synthesized a series of 20 picrates of pyridine derivatives and their crystal structures were studied by single crystal X-ray diffraction method. The single crystal X-ray analysis indicated that the most of the pyridinium picrates crystallized in monoclinic crystal systems with $P2_1/c$ space groups.

A new charge transfer complex of 1,10-phenanthroline picrate was synthesized by Khan et al. [102]. The complex exhibited good antibacterial and antifungal activities. The single crystal structure analysis suggested that the grown complex belonged to monoclinic system with $P2_1/c$ space group. The spectral and other characterizations were also studied.

Antony Joseph et al. [103] have synthesized an optical crystal of glycine mixed L-valine picrate. Single crystal X-ray diffraction analysis revealed that the crystal crystallized in orthorhombic system. UV-vis-NIR analysis indicated that the crystal can be used as an NLO material.

The molecular charge complex urea picrate and its third order nonlinear optical properties were investigated by Naseema et al. [104]. The complex exhibited good optical limiting at 532 nm with the limiting threshold of 80 mJ/pulse. Thermal properties of the complex were also carried out. UV-visible spectrum indicated that the complex can be used as an NLO material.
Gowri et al. [105] have synthesized a new organic nonlinear optical material, L-tryptophanium picrate. The grown material crystallized in orthorhombic system with non-centrosymmetric space group P2₁2₁2₁ as determined by single crystal X-ray analysis. Thermal study indicated that the compound was thermally stable up to 197°C. The SHG efficiency was confirmed by the emission of green light.

The structural, optical, SHG, crystalline perfection and thermal analyses of L-Leucine L-Leucinium picrate crystal were investigated by Bhagavannarayana et al. [106]. The crystal system was triclinic with P2₁ space group. Its SHG efficiency was 1.5 times greater than that of KDP. Thermal studies revealed that the crystal was stable up to 195°C.

Magesh et al. [107] have synthesized dimethylammonium picrate by slow evaporation solution technique and subsequently by Sankaranarayanan–Ramasamy method. The crystal perfection of the grown crystal was analyzed using High resolution-XRD method. The microhardness study revealed that the crystal belonged to soft material. Lower cut-off wavelength and optical transmission window of the crystal were assessed by UV-vis-NIR and the refractive index of the crystal (001) plane was also found.

A mononuclear Sm(III) tetraethylene glycol picrate was studied by Eny Kusrini et al. [108]. The structure of the complex was triclinic crystal system and the space group was P ̅I.

A novel noncentrosymmetric crystal, 1,3-dimethylurea dimethylammonium picrate was grown by Anandha Babu et al. [109]. It crystallized in orthorhombic system with noncentrosymmetric Cmc2₁ space group. The structural perfection of the grown crystals was analysed by High-resolution XRD measurements. The SHG efficiency of the compound was 4 times greater than that of KDP.

A charge transfer complex, 2,6-diaminopyridine picrate was grown by Khan et al. [110]. The complex crystallized in triclinic crystal system with P ̅I space group. The compound exhibited good antimicrobial activities. Thermal study indicated that the compound was thermally stable up to 135°C. The spectral characterizations were also studied.

Subramaniyan Raja et al. [111] have synthesized the crystalline substance of N,N-diethyl anilinium picrate. The compound crystallized in monoclinic system and
the space group was P_{2_1}/c. The TG-DTA analysis suggested that the compound was thermally stable up to 144°C. The Vicker’s microhardness test showed that compound belonged to soft material.

A mononuclear of trietraethylene glycol Eu(III) picrate complex was reported by Saleh et al. [112]. The complex crystallized in triclinic system with $P\bar{T}$ space group. The photoluminescence and electroluminescence spectra indicated that all the emissions were due to the characteristic transitions of the Eu(III) ion.

Charge transfer complex formed between norfloxacin or ciprofloxacin with picric acid and 3,5-dinitrobenzoic acid were studied by Refat et al. [113]. The single crystal X-ray diffraction investigation revealed that the crystal system of the complex was monoclinic. Thermal analysis indicated that the compound was thermally stable up to 290°C. Elemental, IR, 1H NMR and UV-visible characterizations were also made.

Anandhi et al. [114] have synthesized the organic single crystal, imidazolium picrate. The single crystal X-ray analysis of the complex indicated the grown crystal belonged to monoclinic crystal system with P_{2_1}/c space group. The photoluminescence spectrum of the compound showed that it exhibited green emission. Dielectric tensor components were determined theoretically using the DFT theory. The thermal study indicated that the compound was thermally stable up to 235°C.

A new charge transfer complex of 1,10-phenanthroline picrate was studied by Khan et al. [115]. The structure of complex was determined by single crystal X-ray diffraction method and found that the complex crystallized in triclinic system with $P\bar{T}$ space group. Other characterizations were also carried out. The antimicrobial activity results indicate that the complex shows good inhibition against various bacteria and fungi.

Gowri et al. [116] reported a new organic NLO material, adenosinium picrate. The crystalline nature of the material was studied by powder X-ray diffraction pattern. The synthesized material crystallized in orthorhombic system with non-centrosymmetric P_{212121} space group. The SHG efficiency of the materials was 0.25 times greater than that of KDP. TG-DTA analyses were used to study its thermal properties.
Two novel zinc(II) bis(1-ethylbenzimidazol-2-yl)-2-thiapropene picrate complexes were synthesized by Wu et al. [117]. The single crystal X-ray analysis showed that the complexes crystallized in triclinic systems with $P\overline{1}$ space groups. The DNA binding study results suggested that the complexes exhibited good DNA-binding affinity. The spectral and electrical conductivity characterizations were also carried out.

Santhakumari et al. [118] have studied the semiorganic material, thiosemicarbazide cadmium(II) picrate. The single crystal X-ray analysis showed that compound belonged to triclinic system with $P\overline{1}$ space group. The synthesized compound showed good antibacterial and antifungal activities.

Kusrini et al. [119] have studied a new europium picrate complex, [Eu(Pic)$_2$(H$_2$O)(EO$_4$)](Pic)0.75H$_2$O. The synthesized complex crystallized in triclinic system with $P\overline{1}$ space group as determined by single crystal X-ray analysis. The energy transfer process from the ligand to the Eu(III) ion was discussed by investigating the excitation and photoluminescence characteristics.

The preparation, crystal and molecular structure as well as vibrational spectra of L-alanine L-alaninium picrate monohydrate crystal were studied by Ghazaryan et al [120]. The single crystal X-ray analysis showed that the crystal system of the complex was monoclinic with $P2_1$ space group. The IR and Raman spectra were also carried out to confirm the various functional groups in the crystal.

The effect of nickel doping on L-valinium picrate single crystal was studied by Russel Raj et al. [121]. The TG-DTA studies indicated that the doped crystals exhibited better thermal stability than that of undoped crystal. The single crystal X-ray diffraction analysis suggested that the crystal crystallized in monoclinic system. The SHG efficiency of the pure complex was 60 times higher than that of KDP but for the doped complex the SHG efficiency was 45 times greater than that of KDP.

Jin et al. [122] have investigated four 2-methylquinoline derived supramolecular picrate complexes. The structures of the complexes were determined by single crystal X-ray diffraction analysis. The single crystal X-ray analysis indicated that the crystal systems of the complexes were triclinic with $P\overline{1}$ space groups. The spectral characterizations were also studied.
The V-shape ligand bis(N-allylbenzimidazol-2-ylmethyl)benzylamine substituted nickel picrate complexes were synthesized by Wu et al. [123]. Single crystal X-ray analysis revealed that the complex belonged to triclinic system with \(P\overline{1} \) space group. The DNA-binding study indicated that the Ni(II) picrate complex showed good DNA binding mode when compared with ligand.

Yong-Jun Zheng et al. [124] have studied two new circular tetranuclear 2-{N0-[2-(dimethylamino)ethyl]oxamido}benzoate copper(II) 2,2 bipyridine and 1,10 phenanthroline picrate complexes. The single crystal X-ray diffraction study showed that the complexes crystallized in triclinic system with \(P\overline{1} \) space group and monoclinic, \(P2_1/n \) space group respectively. The complexes exhibited good DNA affinity.

Two 2,6-bis(2-benzimidazolyl)pyridine zinc(II) and cadmium(II) picrate complexes were synthesized by Wu et al. [125]. The Zn(II) and Cd(II) complexes crystallized in monoclinic systems with \(P2_1/n \) space groups as confirmed by single crystal X-ray diffraction analysis. The DNA-binding properties of the complexes suggested that the Zn(II) complex had more binding affinity than that of Cd(II) complex.

Molecular charge transfer complexes of the tetramethylethylenediamine with picric acid, benzene-1,4-diol, tin(IV) tetrachloride iodine, bromine and zinc chloride were reported by Abdel Majid et al. [126]. Thermal studies indicated that the complexes were thermally stable up to 191ºC. The complexes exhibited good antibacterial and antifungal activities. The electrical properties, AC conductivity and the dielectric coefficients were also measured.

Muthu et al. [127] studied the single crystal of tetrakis(thiourea) zinc(II) picrate. The single crystal X-ray diffraction study revealed that the crystal belonged to triclinic system with \(P\overline{1} \) space group. The diffuse reflectance spectroscopy was employed to estimate the band gap energy. The crystallinity was studied by powder X-ray diffraction method.

\(p \)-Toluidinium picrate crystal was studied by Muthu et al. [128]. The UV-visible spectrum indicated that the compound was suitable for optoelectronic applications. The powder XRD patterns of crystal showed that the sample had single
phase without detectable impurity. The compound crystallized in monoclinic system with space group P21/c.

Single crystal growth, spectroscopic, relative SHG efficiency and thermal analyses of 2-aminopyridinium picrate were reported by Shakir et al. [129]. The TG-DTA thermal analyses showed that the grown crystal was stable up to 223°C. The single crystal X-ray diffraction method revealed that the crystal system was triclinic with P1 space group. Crystalline perfection of the grown crystal was assessed by high-resolution XRD. The SHG efficiency of the crystal was 0.15 times greater than that of KDP.

Fleck et al. [130] have reported β-alanine picrate crystal. The structure of the crystal was determined by single crystal X-ray diffraction method. The synthesized crystal crystallized in triclinic system with space group P1, Z = 2. The infrared and Raman spectra of the grown crystal were also studied.

Sudharsana et al. [131] have investigated the hydroxyethylammonium picrate crystal. The single crystal X-ray analysis showed that the grown crystal belonged to monoclinic crystal system with centrosymmetrical P21/c space group. The Z-scan was carried out to measure the effective third-order nonlinear optical susceptibility, which was 3.24 × 10⁻³ esu. Optical, mechanical and thermal studies were also carried out.

Bismi Edwin et al. [132] studied the vibrational spectral analysis and quantum chemical computations of L-prolinium picrate crystal. The vibrational analysis revealed the presence of strong O-H...O and N-H...O interaction between L-prolinium and picrate ions. The equilibrium geometry, various bonding features and harmonic vibrational wavenumber of the crystal were also investigated.

Adam [133] studied the charge transfer complexes of procaine hydrochloride with quinol, picric acid and 7,7’ 8,8’-tetracyanoquinodimethane. The complex obtained from the picric acid shows moderate inhibition antibacterial and antifungal activities against various bacteria and fungi. The thermal and spectral studies were also used to characterize the complexes.

A good nonlinear optical materials, l-Asparaginium picrate and Co²⁺ doped l-Asparaginium picrate were studied by Russel Raj and Murugakoothan [134]. The doped crystal has high SHG efficiency than undoped crystal when compared KDP. The TG-DTA studies showed that the doped crystal exhibit better thermal stability.
than pure l-Asparaginium picrate. The single crystal X-ray analysis shows that the doped and undoped crystals were crystallized in monoclinic crystal systems. Other characterizations were also carried out.

A survey of literature on organic picrate complexes reveals the following points clearly.

- There are many nitrogen containing heterocyclic-picrate complexes to be synthesized and characterized.
- Among the organic picrate complexes synthesized so far, there are many other physical properties yet to be studied.
- The complete structural studies for all the picrate complexes synthesized so far are not available in the literature.
- Thermal analyses (TG-DTA and DSC) and spectral studies (UV-visible, Emission, Polarized Raman, FTIR and NMR) for many picrate complexes are not reported.
- Properties like dielectric, nonlinear optical, mechanical and antimicrobial activity studies of a number of picrate complexes are not studied.
AIM OF THE PRESENT WORK

A survey of literature indicates that an extensive work has been done on various picrate complexes. Realising the importance of the complexes, we undertook the synthesis and characterization of some of the organic picrate crystals. The complexes were characterized by spectral, structural, thermal, optical, dielectric, mechanical and antimicrobial studies. The following six organic picrate complexes were synthesized and characterized.

1. Benzotriazolinium picrate BTP
2. 4-Hydroxytetramethylpiperazinium picrate TMPP
3. 4-Piperidinium carboxylamide picrate PCP
4. 3,5 Dimethylpyrazolinium picrate DMPP
5. 4-Dimethylaminopyridinium picrate DAPP
6. 2-Methylimidazolinium picrate MIMP

The synthesized complexes were grown by slow evaporation solution growth method at room temperature and were characterized by elemental analysis, solubility study, powder X-ray diffraction, single crystal X-ray structure analysis and UV-visible, emission, Fourier transform infrared (FTIR), polarized Raman and nuclear magnetic resonance (NMR) spectra. Thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC) and microhardness measurement, dielectric, nonlinear optical property (NLO) and antimicrobial activity studies were also carried out.
References

