CONTENT

Abbreviation

Abstract

Review of Literature

1.1. Introduction
1.2. Historical background
1.3. Structure and characteristic features of GSH
1.4. Biosynthesis and red-ox cycle of glutathione
1.5. Biological functions of GSH
1.6. Structural characteristics of GR
 1.6.1. FAD-binding domain
 1.6.2. NAD-binding domain
 1.6.3. Catalytic dithiol reactive center
1.7. Physiological characteristics of GR
1.8. Catalytic reaction of GR with its substrate
1.9. GR- genome and proteome profile
1.10. Determination of GR activity
1.11. Physic-chemical factors affecting GR activity
 1.11.1. Effect of pH on enzyme activity
 1.11.2. Isoelectric point (pI) of GR
 1.11.3. Temperature on GR activity
 1.11.4. Influence of buffer-ion concentration
 1.11.5. Effect of metal ions
1.12. Purification strategies for GR
1.13. Enzyme kinetics
 1.13.1. GR activation and inactivation of substrate/product
 1.13.2. Catalytic efficiency (K_{cat}/K_m) of GR
 1.13.3. Activation energy (ΔG^\ddagger) of GR
1.14. Simulation and dynamic properties of GR
1.15. Consequences of GR activity in animal system
 1.15.1. Cancer
 1.15.2. Alzheimer’s disease
 1.15.3. Cardiovascular disease
1.16. Consequences of GR activity in plants system
1.17. Therapeutic values of GR
1.18. GR as pharmaceutical targets
 1.18.1. Malaria
 1.18.2. Schistosomiasis
 1.18.3. Chagas disease

1.19. Tumor therapeutics

1.20. GR Inhibitors

1.21. Cyanobacteria

1.22. Economic and nutritious value

1.23. *Nostoc* and its contribution to the humanity

1.24. Antioxidant detoxification mechanism

Objective

Methodology

2.1. Culture maintenance

2.2. Chlorophyll *a* estimation for growth determination
 2.2.1. Extraction of chlorophyll *a*

2.3. Sample extraction
 2.3.1. Ultrasonication
 2.3.2. Chemical digestion

2.4. Estimation of total protein

2.5. GR activity determination
 2.5.1. Assay protocol

2.6. Acetone precipitation

2.7. Isolation and purification of GR
 2.7.1. Ion exchange chromatography (IEC)
 2.7.1.1. Regeneration of ion exchange matrix
 2.7.1.2. Protocol
 2.7.2. Dialysis
 2.7.3. Affinity chromatography (AFC)
 2.7.3.1. Regeneration of affinity matrix (reactive red-120 agarose)
 2.7.3.2. Protocol
 2.7.4. Gel filtration
 2.7.4.1. Protocol

2.8. Purity and molecular mass (*M*_r) determination

2.8.1. SDS-PAGE analysis
 2.8.1.1. Gel casting
 2.8.1.2. Sample Preparation
 2.8.1.3. Electrophoresis
 2.8.1.4. Gel staining solution
 2.8.1.5. Destaining solution

2.9. Role of physico-chemical factor on GR activity
2.9.1.1. Effect of pH on GR activity
2.9.1.2. Effect of temperature on GR activity
2.9.1.3. Effect of buffer-ion concentration on GR activity
2.9.1.4. Effect of metal ions on GR activity

2.9.2. **Kinetic characterization of GR**
2.9.2.1. Substrate specificity
2.9.2.2. Lineweaver-Burk plot

2.10. **Sequence and structure based theoretical analysis of GR**
2.10.1. Sequence retrieval

2.11. **Sequence analysis**
2.11.1. Physical and chemical properties of GR from sequence
2.11.1.1. Protparam prediction
2.11.1.2. SOPMA prediction

2.12. **Homology search and phylogenetic analysis**
2.12.1. BLAST analysis
2.12.2. ClustalW analysis
2.12.3. MEGA phylogenetic analysis

2.13. **Evolutionary Trace (ET) analysis**
2.13.1. Evolutionary trace server prediction
2.13.2. Evolutionary trace analyzer (Trace suite II) prediction

2.14. **Sub-cellular localization prediction**
2.14.1. ProtCompB prediction
2.14.2. PSORTb prediction
2.14.3. TargetP prediction
2.14.4. SLP-Local prediction

2.15. **Pattern / Motif /Domain architecture prediction**
2.15.1. PPsearch prediction
2.15.2. CDART prediction
2.15.3. MEME prediction

2.16. **Protein structure and function classification**
2.16.1. SMART prediction
2.16.2. InterProScan prediction
2.16.3. PRED-CLASS prediction

2.17. **Protein tertiary structure modeling**
2.17.1. Template prediction
2.17.2. Structure Modelling
2.17.2.1. Modeller9.10
2.17.2.2. Alignment
2.17.2.3. Model building
2.17.3. Energy minimization
2.17.3.1. SPDBViewer (4.04)
2.17.4. Validation
2.17.5. Cross validation

2.18. **Catalytic site prediction**
2.18.1. Enzyme 1D signature
2.18.2. CASTp calculation
2.19. Enzyme-substrate interaction
 2.19.1. Substrate modeling
 2.19.2. Autodock 4.2
 2.19.2.1. Coordinate File Preparation
 2.19.2.2. AutoGrid Calculation
 2.19.2.3. Docking
 2.19.2.4. Result analysis
2.20. Molecular simulation and dynamics (MDS)
 2.20.1. GROMACS (4.5.4) simulation
 2.20.2. PRODRG2 server
 2.20.2.1. Ligand topology
 2.20.3. Generation of topology
 2.20.4. Building protein-ligand complex topology
 2.20.5. Setup the box
 2.20.6. GROMACS pre-process
 2.20.7. System charge neutralization
 2.20.8. Energy minimization
 2.20.8.1. Steepest descent method
 2.20.8.2. Conjugate gradient method
 2.20.9. Setting up the Position-Restrained Dynamics
 2.20.9.1. NVT-equilibration
 2.20.9.2. NPT- fixation
 2.20.10. Setting up the Molecular Dynamics Simulation
2.21. Simulation analysis
 2.21.1. Root mean square assessment
 2.21.2. Hydrogen bond evaluation
2.22. Grace plotting analysis

Results

3.1. Culture maintenance
3.2. Protein and GR activity determination
3.3. Purification of GR enzyme
 3.3.1. Ion exchange (DEAE-cellulose) chromatography
 3.3.2. Affinity (Reactive red-120 agarose gel) chromatography
 3.3.3. Gel filtration (Sephacryl S-300) chromatography
3.4. Physico-chemical characterization of GR activity
 3.4.1. Effect of pH on GR activity
 3.4.2. Effect of Temperature on GR activity
 3.4.3. Optimization of ionic strength
 3.4.4. Effect of metal ions on GR activity
 3.4.5. Molecular weight determination
3.5. Kinetics characterization of GR
3.6. *Insilico* analysis of Glutathione Reductase in different species of *Nostoc*
 3.6.1. Retrieval of GR sequences
3.6.2. Physical and chemical properties of GR in retrieved sequences
3.6.3. Secondary structure analysis
3.6.4. Sequence analysis
3.6.4.1. Pairwise alignment
3.6.4.2. Multiple sequence alignment and phylogenetic analysis

3.7. Evolutionary trace (ET) analysis

3.8. Sub-cellular localization prediction
3.8.1. ProtCompB analysis
3.8.2. PSORTb analysis
3.8.3. TargetP analysis
3.8.4. SLP-local analysis

3.9. Pattern-Motif-Domain architecture prediction and analysis
3.9.1. PPsearch analysis
3.9.2. CDART
3.9.3. MEME analysis

3.10. Protein structure and function classification
3.10.1. SMART analysis
3.10.2. InterproScan analysis
3.10.3. PRED-CLASS analysis

3.11. Protein tertiary structure modeling
3.11.1. Template selection
3.11.2. Alignment and modeling

3.12. Catalytic site prediction
3.12.1. Sequence based active site prediction
3.12.2. Structure based active site prediction
3.13. Substrate GSSG retrieval and optimization

3.14. Docking analysis of enzyme-substrate interaction

3.15. Cross validation

3.16. Molecular simulation and dynamics
3.16.1. MD trajectory analysis of protein-ligand complex
3.16.2. FAD- RMSD and hb analysis
3.16.3. NAD - RMSD and hb analysis
3.16.4. GSSG- RMSD and hb analysis
3.16.5. RMSF analysis of GR

Discussion 157-180
Summary 181-183
References 184-203
Webography 204-205
Publication 206