Parasites are believed to have been known even before the era of Biblical Palestine and the peak of the ancient Egyptian civilization. Accounts by various individuals have revealed that the existence of parasitic animals, especially those that infect humans, was known as long ago as 1250 to 1000 B.C. Aristotle (384-322 B.C.) who wrote “Historia Animalium,” has stated earlier; “there are three kinds of helminths. Those which one calls large and flat (Tapeworms), those which are cylindrical (Ascaris lumbricoides), and thin ones, the oscarides (Enterobius vermicularis).” The Phylum Platyhelminthes has had a long and devious history, chiefly because of persistent and recurrent attempts, evident even at the present time, to unite all vermiform animals under a phylum vermes. Since there are many kinds of worms of very different morphology, naturally no two authors could agree upon the groups to be included in the vermes and their relational arrangement, and throughout the nineteenth century the number of arrangements published was about equal to the number of interested zoologists. The parasitic flatworms naturally attracted attention from ancient times. According to Hyman (1951) there is mention of parasitic worms, some probably tapeworms, in an Egyptian papyrus, dating from 1550 B.C., and tapeworms and bladder worms are recorded by various ancient writers.

According to Cheng (1973) the knowledge of animal parasitic nematodes is probably almost as ancient as the History of man. The oldest records of nematodes among the ancient civilizations of the Mediterranean and Middle East occurs in the Ebers’ Papyrus dated 1553-1550 B.C. Egyptian records indicate that Ascaris and Dracunculus were known as early as 1553-1550 B.C. Literature on distribution of helminths in the digestive tracts of fishes inhabiting different riverine and pond ecosystem has been reviewed by Williams et. al. (1970), Kennedy et. al. (1976), Hine (1980 a, 1980 b) and Hine and Francis (1980). It is a widely accepted opinion that the parasites prefer the habitat which is most suitable for their survival. In the digestive tract conditions differ in its different parts. Smyth (1962) observed that the region behind pyloric region sphincter in vertebrates is favourable physiologically to the majority of helminths. Physiological factors affecting the distribution of helminthes in the host’s digestive tract have been studied by Williams et. al. (1970) and Crompton (1973). Francisco Redi is considered the founder of Parasitology because he was the first to actually search for parasites, and to find them, not only in the intestine and other organs of humans and other mammals, but also in the air sacs of birds and in the swim bladder of fishes. With the perfection of Leeuwenhoek’s first microscope in the latter half of the 1600’s, parasitology entered a new era, even
though such prominent early helminthologists as Ruddphi and Bremser carried the idea “worms came from body excretions” into the 19th century (Cheng, 1973).

According to Cheng (1973) progress in parasitology was slow up to 1800. The greatest contributions were made by Rudolphi in the late 1700’s and early 1800’s and Zeder in the 1800’s. Rudolphi, in an attempt to classify worms, recognized five classes: Nematoidea, Acanthocephala, Nematoda, Cestoda and Cystica. The last class was abandoned half a century later when cysticerci were shown to be tapeworm larvae by Leuckart, Von Siebold, Kuchenmeister, and others. The occurrence of a life cycle in trematodes was finally postulated in 1842, but it was not until Thomas (1881, 1882, and 1883) independently reported the life cycle of the liver fluke, Fasciola hepatica, that the complex life cycle was known. Diesing (1851) published *Systema Helminthum. Sumptibus Academiae Caesareae Scientiarum* Vol. V. 2. The years 1881-1882 can be considered another landmark, since the solving of the first trematode life history that of *Fasciola hepatica*, was accomplished. Life history studies among platyhelminths still remain a popular & and valuable form of parasitological research. Knowledge of life histories is not only of practical importance, but also provides insights into the phylogenetic relationship between these metazoan parasites. By the beginning of the 20th century, parasitology was well established as a science. The 1900’s a witnessed outstanding contribution in parasitology from all over the world. Since World War second, with the improvement of laboratory instruments and techniques, another phase of parasitology is gaining impetus-parasite physiology and biochemistry. Increasingly more researchers are discovering that, physiologically speaking, parasites are quite similar to their free living relatives. On the molecular level, these differences become practically nil. Chandler (1946) stated that “Parasitology touches upon or overlaps so many others sciences that a parasitologist probably has to stick his nose into more different fields of knowledge than any other kind of biologist.”

The works of Cunningham (1887), Odhner (1910), and Van Cleave (1921) has contributed much to the knowledge of trematodes. Kathariner (1904) worked on Gyrodactylus elegans. Watson (1911) introduced the genus Gyrocotyle and its significance for problems of cestode structure and phylogeny. Odhner (1912) studied trematodes, cestodes and monogeneans. Hall (1917) studied animal parasites and published “*Handbook of Practical Treatment*”. Dollfus (1923) worked on Gyrocotyle cestodes. Yorke and Maplestone (1926) published "Nematode Parasites of Vertebrates". Szidat (1929) worked on helminthes. Filleborn (1929) studied the larval migration of some parasitic nematodes in

Willey (1941) reported the life history and bionomics of the trematode, *Zygocotyle lunata* (Paramphistomidae). Price (1942) reported North American monogenetic trematodes of the family Hexabothriidae (Polystomatoidea). Williams (1942) described observations on the life and taxonomic relationships of the trematode, *Aspidogaster conchicola*. Ball (1943) published "Parasitism and evolution". Mizelle et al. (1943) studied monogenetic trematodes and gave host specificity of *Pomoxis tetraonchinae*. Price (1943 a & b) described North American monogenetic trematodes of the family Discocotylidae (Diclidophoroidea). Yamaguti (1943) gave an introduction of cercaria of *Plagiorchis muris*. Pavlovskii (1945) gave an account of the ecological parasitology. Lynch (1945) re-described the new species of *Gyrocotyle* from the rat fish, *Hydrolagus collliei*, with notes on the morphology and taxonomy of the genus. Joyceaux and Gaud (1946) worked on helminth parasites. Stoll (1947) reported this wormy world. De Bach and Smith (1947) reported the effects of parasite population density on rate of change of host and parasite populations. Pavalovski and Gnezdilov (1949) provided the factor of intensity in experimental infection with the broad tapeworm. Yin and
Sproston (1949) studied the monogenetic trematodes of China. Chitwood and Chitwood (1950) published "An Introduction to Nematology".


Kearn (1971) introduced to the physiology and behaviour of the monogenean skin parasite Entobdella soleae in relation to its host (Solea solea). Ulmer (1971) reported site-finding behaviour in helminthes
in intermediate and definitive hosts, and published "Ecology and Physiology of Parasites". Kalyankar (1971) extensively studied nematode parasites of fishes from India. Bird (1971) published "The Structure of Nematodes". Jueco et. al. (1971) reported seasonal prevalence and density of Anisakis larvae in fishes. Cheng and Snyder (1972) studied host parasite relationships between larval trematodes and their hosts. Erasmus (1972) gave the biology of trematodes. Yamaguti (1953) and Gussev (1973) gave a detailed account on taxonomy of monogeneans. Wooten (1973) reported the metazoan parasite fauna of fish from Hanningfield Reservoir, Essex, in relation to features of the habitat and host populations. Cheng (1973) has rightly stated that on a broader plane the history of biology has been, in part, the history of parasitology and that both the applied and basic phases of parasitology are rapidly advancing. The large volume of original research being contributed from all over the world indicates the healthy state of the discipline. Kennedy (1975) published "Ecological animal parasitology". Meyer and Hoffmann (1976) gave an account of the "Parasites and Diseases of Great Lakes Warm Water Fishes". Chubb (1977, 1979, 1980, and 1982) studied in detail the seasonal occurrence of helminthes in freshwater fishes of different climatic zones of the world. Olson (1978) studied the prevalence and intensity of infection in the English sole. Kennedy (1978) gave an account on the parasite fauna of resident char Salvelinus alpinus from Arctic Islands. Bilqees and Rehana (1979) worked on helminths of fresh water fishes of Kalri Lake, Pakistan. Andrews (1979) observed the host specificity of parasites of perch. Paperna (1980) presented a CIFE tech. paper on parasites infections and diseases of fish in Africa.


