TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>OPTIMIZATION</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>ENGINEERING APPLICATIONS OF OPTIMIZATION</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>SOLUTION METHODOLOGIES</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>RESEARCH OBJECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>ORGANISATION OF THE THESIS</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>OPTIMIZATION TECHNIQUES</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>META-HEURISTIC ALGORITHMS</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Simulated Annealing</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Tabu Search</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Genetic Algorithm</td>
<td>14</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Evolution Strategies</td>
<td>14</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Evolutionary Programming</td>
<td>15</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Genetic Programming</td>
<td>16</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Particle Swarm Optimization</td>
<td>16</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Ant Colony Optimization</td>
<td>17</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>2.2.9</td>
<td>Harmony Search</td>
<td>18</td>
</tr>
<tr>
<td>2.2.10</td>
<td>Big Bang–Big Crunch Optimization</td>
<td>19</td>
</tr>
<tr>
<td>2.2.11</td>
<td>Cuckoo Search Algorithm</td>
<td>19</td>
</tr>
<tr>
<td>2.2.12</td>
<td>Glowworm Optimization Algorithm</td>
<td>21</td>
</tr>
<tr>
<td>2.2.13</td>
<td>Firefly Algorithm</td>
<td>22</td>
</tr>
<tr>
<td>2.2.14</td>
<td>Charged System Search</td>
<td>23</td>
</tr>
<tr>
<td>2.2.15</td>
<td>Comparison of Swarm intelligence based meta heuristics algorithms</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>OPTIMIZATION OF TRUSS STRUCTURES</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>DEVELOPMENT OF AFRICAN WILD DOG ALGORITHM</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>AFRICAN WILD DOG META-HEURISTIC ALGORITHM</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>CONSTRAINT OPTIMIZATION PROBLEMS</td>
<td>50</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Constraint Handling Method</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>APPLICATION OF AWDA FOR CONSTRAINED OPTIMIZATION PROBLEMS</td>
<td>51</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Constrained Function I</td>
<td>52</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Constrained Function II</td>
<td>53</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Constrained Function III</td>
<td>55</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Constrained Function IV</td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>SUMMARY AND CONCLUDING REMARKS</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>ENGINEERING OPTIMIZATION</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>PRESSURE VESSEL DESIGN</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>OPTIMIZATION OF WEIGHT OF SPRING</td>
<td>64</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>4.4</td>
<td>DESIGN OPTIMIZATION OF WELDED BEAM</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>ECONOMIC LOAD DISPATCH PROBLEM</td>
<td>71</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Formulation of Economic Load Dispatch Problem</td>
<td>73</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Optimization of 13 Unit Generator System</td>
<td>75</td>
</tr>
<tr>
<td>4.6</td>
<td>FACILITY LAYOUT PROBLEM</td>
<td>78</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Layout Representation</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>4.6.1.1 Factoradic base</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>4.6.1.2 Relation between factoradic base and permutations</td>
<td>81</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Optimization of Facility Layout Problems</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>using AWDA</td>
<td></td>
</tr>
<tr>
<td>4.6.3</td>
<td>Layout Planning of a Site Precast Yard</td>
<td>85</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Construction Site Unequal Area Layout</td>
<td>92</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Construction Site Layout Planning</td>
<td>95</td>
</tr>
<tr>
<td>4.7</td>
<td>PERFORMANCE OF AWDA IN ENGINEERING OPTIMIZATION PROBLEMS</td>
<td>101</td>
</tr>
<tr>
<td>5</td>
<td>TRUSS STRUCTURES WITH CONTINUOUS VARIABLES</td>
<td>102</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>102</td>
</tr>
<tr>
<td>5.2</td>
<td>FORMULATION OF TRUSS DESIGN OPTIMIZATION PROBLEM WITH CONTINUOUS VARIABLES</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>5.2.1 Constraint Conditions</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>BENCHMARK PROBLEMS</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>5.3.1 10 Bar Planar Truss</td>
<td>106</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>5.3.2</td>
<td>17 Bar Planar Truss</td>
<td>109</td>
</tr>
<tr>
<td>5.3.3</td>
<td>25 Bar Spatial Truss</td>
<td>112</td>
</tr>
<tr>
<td>5.3.4</td>
<td>72 Bar Spatial Truss</td>
<td>116</td>
</tr>
<tr>
<td>5.4</td>
<td>PERFORMANCE OF AWDA IN TRUSS STRUCTURES OPTIMIZATION WITH CONTINUOUS VARIABLES</td>
<td>118</td>
</tr>
<tr>
<td>6</td>
<td>TRUSS STRUCTURES WITH DISCRETE VARIABLES</td>
<td>120</td>
</tr>
<tr>
<td>6.1</td>
<td>INTRODUCTION</td>
<td>120</td>
</tr>
<tr>
<td>6.2</td>
<td>MATHEMATICAL MODEL FOR DISCRETE STRUCTURAL OPTIMIZATION PROBLEMS</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>6.2.1 Constraint Conditions</td>
<td>122</td>
</tr>
<tr>
<td>6.3</td>
<td>APPLICATION OF AWDA FOR OPTIMUM DESIGN OF TRUSS STRUCTURES WITH DISCRETE VARIABLES</td>
<td>123</td>
</tr>
<tr>
<td>6.4</td>
<td>BENCHMARK PROBLEMS</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>6.4.1 10 Bar Planar Truss</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>6.4.2 15 Bar Planar Truss Structure</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>6.4.3 25 Bar Spatial Truss Structure</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>6.4.4 52 Bar Planar Truss</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>6.4.5 72 Bar Spatial Truss</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>6.4.6 200 Bar Planar Truss Structure</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>6.4.7 Real Life Example: 582-Member Space Truss Tower</td>
<td>148</td>
</tr>
<tr>
<td>6.5</td>
<td>PERFORMANCE OF AWDA IN TRUSS STRUCTURE OPTIMIZATION WITH DISCRETE VARIABLES</td>
<td>156</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSIONS</td>
<td>157</td>
</tr>
<tr>
<td>7.1</td>
<td>CONCLUSIONS</td>
<td>157</td>
</tr>
<tr>
<td>7.2</td>
<td>SCOPE FOR FUTURE RESEARCH</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>APPENDIX 1</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>178</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of comparison of Swarm Intelligence Metaheuristics</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Optimal results for the Goldstein and price function using AWD algorithm</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Optimal results for the constrained function I using AWD algorithm</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Optimal results for the Constrained function II using AWD algorithm</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>Optimal results for the constrained function III using AWD algorithm</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>Optimal results for the constrained function IIIA using AWD algorithm</td>
<td>58</td>
</tr>
<tr>
<td>3.6</td>
<td>Optimal results for the constrained function IV using AWD algorithm</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Optimal results for the pressure vessel design</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Optimal results for the minimization of weight of spring</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Optimal results for welded beam design</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>Parameters for the thirteen-unit system</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of dispatch results for the load of 2520 MW in the system</td>
<td>77</td>
</tr>
<tr>
<td>4.6</td>
<td>Permutation matrix with 11 facilities</td>
<td>80</td>
</tr>
<tr>
<td>4.7</td>
<td>String layout representation</td>
<td>80</td>
</tr>
<tr>
<td>4.8</td>
<td>Natural mapping between factoradic numbers and permutations when n=3</td>
<td>82</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.9</td>
<td>Mapping ((1_21_10_0) \rightarrow (2 - 3 - 1)) based on Algorithm 1</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Mapping ((2 - 3 - 1) \rightarrow (1_21_10_0)) based on Algorithm 2</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Location coordinates of layout planning of a site precast yard</td>
<td>86</td>
</tr>
<tr>
<td>4.12</td>
<td>Comparison of best layout for site precast yard</td>
<td>90</td>
</tr>
<tr>
<td>4.13</td>
<td>Comparison of optimal results of unequal area construction site layout</td>
<td>95</td>
</tr>
<tr>
<td>4.14</td>
<td>Closeness index of workflows between site facilities</td>
<td>98</td>
</tr>
<tr>
<td>4.15</td>
<td>Optimal results of construction site layout planning locations</td>
<td>99</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of optimal designs for the 10-bar planar truss (Case-1)</td>
<td>107</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of optimal designs for the 10-bar planar truss (Case-2)</td>
<td>109</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison of optimal designs for the 17 bar planar truss structure</td>
<td>111</td>
</tr>
<tr>
<td>5.4</td>
<td>Member stress limits for the 25 bar spatial truss structure</td>
<td>114</td>
</tr>
<tr>
<td>5.5</td>
<td>Load Cases for the 25 bar spatial truss structure</td>
<td>114</td>
</tr>
<tr>
<td>5.6</td>
<td>Comparison of optimal designs for the 25 bar spatial truss structure</td>
<td>115</td>
</tr>
<tr>
<td>5.7</td>
<td>Load Cases for the 72 bar spatial truss structure</td>
<td>117</td>
</tr>
<tr>
<td>5.8</td>
<td>Comparison of optimal designs for the 72 bar spatial truss structure</td>
<td>118</td>
</tr>
<tr>
<td>6.1</td>
<td>Comparison of optimal designs for the 10-bar planar truss (Case-1)</td>
<td>126</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>6.2</td>
<td>Comparison of optimal designs for the 10-bar planar truss (Case-2)</td>
<td>128</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison of optimal designs for the 15 bar planar truss structure</td>
<td>130</td>
</tr>
<tr>
<td>6.4</td>
<td>Load case 1 for the 25 bar spatial truss structure</td>
<td>132</td>
</tr>
<tr>
<td>6.5</td>
<td>Load case 2 & 3 for the 25 bar spatial truss structure</td>
<td>133</td>
</tr>
<tr>
<td>6.6</td>
<td>Available cross section areas of the AISC code</td>
<td>133</td>
</tr>
<tr>
<td>6.7</td>
<td>Comparison of optimal designs for the 25 bar spatial truss structure (case 1)</td>
<td>134</td>
</tr>
<tr>
<td>6.8</td>
<td>Comparison of optimal designs for the 25 bar spatial truss structure (case 2)</td>
<td>136</td>
</tr>
<tr>
<td>6.9</td>
<td>Comparison of optimal designs for the 25 bar spatial truss structure (case 3)</td>
<td>136</td>
</tr>
<tr>
<td>6.10</td>
<td>Comparison of optimal designs for the 52 bar planar truss structure</td>
<td>138</td>
</tr>
<tr>
<td>6.11</td>
<td>Load cases for the 72 bar spatial truss structure</td>
<td>140</td>
</tr>
<tr>
<td>6.12</td>
<td>Comparison of optimal design for the 72 bar spatial truss structure (case 1)</td>
<td>141</td>
</tr>
<tr>
<td>6.13</td>
<td>Comparison of optimal design for the 72 bar spatial truss structure (case 2)</td>
<td>142</td>
</tr>
<tr>
<td>6.14</td>
<td>Group membership for 200 bar plane truss structure</td>
<td>145</td>
</tr>
<tr>
<td>6.15</td>
<td>Comparison of optimum weight for 200 bar plane truss structure</td>
<td>146</td>
</tr>
<tr>
<td>6.16</td>
<td>Optimum result for 200 bar plane truss structure</td>
<td>147</td>
</tr>
<tr>
<td>6.17</td>
<td>Comparison of results of 582-member space truss tower</td>
<td>153</td>
</tr>
<tr>
<td>6.18</td>
<td>Optimal Designs for 582- member space truss tower</td>
<td>154</td>
</tr>
<tr>
<td>A1.1</td>
<td>List of AISC profile sections used in optimization of 582 bar truss</td>
<td>161</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Meta-heuristic algorithms (Modified from Weise 2009)</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Goldstein and price function</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Center and End section of the pressure vessel</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Tension / compression springs</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>Tension / compression spring to be optimised</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Welded beam structure</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>Incremental fuel cost versus power output</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>for a 5 valve steam turbine unit</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Optimum layout solution achieved using AWDA</td>
<td>91</td>
</tr>
<tr>
<td>4.7</td>
<td>Optimum layout solution achieved using Tabu search</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>(Liang & Chao 2008)</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Simplified layout of the hypothetical construction site</td>
<td>97</td>
</tr>
<tr>
<td>4.9</td>
<td>Optimum layout solution achieved using GA</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>(Ning et al 2009)</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Optimum layout solution achieved using MMAS-GA</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(Ning et al 2009)</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Optimum layout solution achieved using AWDA</td>
<td>100</td>
</tr>
<tr>
<td>5.1</td>
<td>10 bar planar truss</td>
<td>106</td>
</tr>
<tr>
<td>5.2</td>
<td>Iteration history of optimal design of 10 bar planar truss (Case 1)</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>using AWDA</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Iteration history of optimal design of 10 bar planar truss (Case 2)</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>using AWDA</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>17 bar planar truss</td>
<td>110</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.5</td>
<td>Iteration History of optimal design of 17 bar planar truss using AWDA</td>
<td>112</td>
</tr>
<tr>
<td>5.6</td>
<td>25 bar spatial truss</td>
<td>113</td>
</tr>
<tr>
<td>5.7</td>
<td>Iteration History of optimal design of 25 bar planar truss using AWDA</td>
<td>115</td>
</tr>
<tr>
<td>5.8</td>
<td>72 bar spatial truss</td>
<td>116</td>
</tr>
<tr>
<td>5.9</td>
<td>Iteration history of optimal design of 72 bar planar truss using AWDA</td>
<td>117</td>
</tr>
<tr>
<td>6.1</td>
<td>10 bar planar truss</td>
<td>125</td>
</tr>
<tr>
<td>6.2</td>
<td>Iteration history of optimal design of 10 bar planar truss (Case 1) using AWDA</td>
<td>127</td>
</tr>
<tr>
<td>6.3</td>
<td>Iteration history of optimal design of 10 bar planar truss (Case 2) using AWDA</td>
<td>127</td>
</tr>
<tr>
<td>6.4</td>
<td>15 bar planar truss structure</td>
<td>129</td>
</tr>
<tr>
<td>6.5</td>
<td>Iteration history of optimal design of 15 bar planar truss using AWDA</td>
<td>130</td>
</tr>
<tr>
<td>6.6</td>
<td>25 bar spatial truss structure</td>
<td>132</td>
</tr>
<tr>
<td>6.7</td>
<td>Iteration history of optimal design of 25 bar planar truss (Case 1) using AWDA</td>
<td>135</td>
</tr>
<tr>
<td>6.8</td>
<td>Iteration history of optimal design of 25 bar planar truss (Case 2) using AWDA</td>
<td>135</td>
</tr>
<tr>
<td>6.9</td>
<td>Iteration history of optimal design of 25 bar planar truss (Case 3) using AWDA</td>
<td>137</td>
</tr>
<tr>
<td>6.10</td>
<td>52 bar planar truss structure</td>
<td>138</td>
</tr>
<tr>
<td>6.11</td>
<td>72 bar spatial truss structure</td>
<td>140</td>
</tr>
<tr>
<td>6.12</td>
<td>Iteration history of optimal design of 72 bar planar truss (Case 1) using AWDA</td>
<td>142</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.13</td>
<td>Iteration history of optimal design of 72 bar planar truss (Case 2) using AWDA</td>
<td>143</td>
</tr>
<tr>
<td>6.14</td>
<td>200 bar planar truss structure</td>
<td>144</td>
</tr>
<tr>
<td>6.15</td>
<td>Iteration history of optimal design of 200 bar planar truss using AWDA</td>
<td>147</td>
</tr>
<tr>
<td>6.16</td>
<td>582-member space truss tower - Top View</td>
<td>150</td>
</tr>
<tr>
<td>6.17</td>
<td>582-member space truss tower - 3D-View</td>
<td>151</td>
</tr>
<tr>
<td>6.18</td>
<td>582-member space truss tower - Side View</td>
<td>152</td>
</tr>
<tr>
<td>6.19</td>
<td>Iteration history of optimal design of 582 bar planar truss using AWDA</td>
<td>155</td>
</tr>
<tr>
<td>6.20</td>
<td>Cost comparison of 582-member space truss tower</td>
<td>155</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\sigma_m)_{\text{all}}$</td>
<td>allowable axial stresses for the m^{th} member</td>
</tr>
<tr>
<td>σ_i^b</td>
<td>allowable buckling stress in member i when it is in compression</td>
</tr>
<tr>
<td>σ</td>
<td>Bending stress</td>
</tr>
<tr>
<td>$f^*(x)$</td>
<td>best known optimum objective function value</td>
</tr>
<tr>
<td>x^*</td>
<td>best known optimum solution to the function</td>
</tr>
<tr>
<td>b</td>
<td>breath of welded beam</td>
</tr>
<tr>
<td>P_c</td>
<td>Buckling load</td>
</tr>
<tr>
<td>c_{ij}</td>
<td>closeness index of work flow between facilities i and j</td>
</tr>
<tr>
<td>σ_m</td>
<td>computed axial stresses for the m^{th} member</td>
</tr>
<tr>
<td>e_i</td>
<td>constants from the valve-point loading effect of generators</td>
</tr>
<tr>
<td>f_i</td>
<td>constants from the valve-point loading effect of generators</td>
</tr>
<tr>
<td>$\delta_{j,k}$</td>
<td>constraint being bound on displacements</td>
</tr>
<tr>
<td>s_m</td>
<td>constraint being bound on slenderness ratio</td>
</tr>
<tr>
<td>g_m</td>
<td>constraint being bound on stresses</td>
</tr>
<tr>
<td>D_i</td>
<td>continuous set or as a discrete set</td>
</tr>
<tr>
<td>a_i</td>
<td>cost coefficients of generation unit i</td>
</tr>
<tr>
<td>b_i</td>
<td>cost coefficients of generation unit i</td>
</tr>
<tr>
<td>c_i</td>
<td>cost coefficients of generation unit i</td>
</tr>
<tr>
<td>C_{MK}</td>
<td>cost per unit distance for resources Mk flow</td>
</tr>
</tbody>
</table>
C_e - critical slenderness ratio parameter
A_i - cross-sectional area of member i chosen between A_min and A_max
t - depth of welded beam
g_j({x}) - design constraints
d_{j,k} - displacements computed in the k^{th} direction of joint j
d_{ij} - distance between location i and j
d_{kl} - distance between the facilities k and l
M_{Lmki,j} - distance travelled by resource Mk flow per unit time between locations i and location j
K_m - effective length factor of m^{th} member
δ - End Deflection
B - Euclidian distance between Dog ‘i’ and ‘j’
x_{ik} - facility I is assigned to location k
x_{jl} - facility j is assigned to location l
$!$ - Factorial
F_j - fitness of dog j
$FL_{Mki,j}$ - frequency of resource Mk flow between location I and j per unit time
f_{ij} - frequency trips made by construction personnel between facilities i and j
$F_i(P_i)$ - fuel cost function of unit I
$Gilbest$ - Global best
in - Inch
R - inner radius of the pressure vessel
ksi - Kilogram per square inch
L_i - length of member i
L - length of the cylindrical segment of the pressure vessel
L_m - length of the member m
l - length of weld used in welded beam
L_{best} - Local best
\gamma_i - material density of member i
x_{i,max} - maximum allowable values for the design variable x_i
\sigma_{max} - Maximum bending stress
\hat{\sigma}_{max} - Maximum end deflection
P_{i,max} - Maximum generation limits of unit i
\tau_{max} - Maximum shear stress
D - mean coil diameter of the Tension/Compression Spring
A - mean Euclidian distance of all dogs
MW - Mega Watt
x_{i,min} - minimum allowable values for the design variable x_i
P_{i,min} - Minimum generation limits of unit i
R_m - minimum radii of gyration
G - Modulus of rigidity
x_{i,new} - New position of design variable
g_n - n_{th} Constraints
N_c - number of active coils of the Tension/Compression Spring
P - number of available variables
n_c - number of compression elements
N - number of constraints
N_d - Number of design variables
n - number of facilities, or locations
N_g - number of groups (number of design variables)
M - number of inequality functions
N_m - Number of members
m - number of nodes
K - number of problem specified behavioral constraints

Nu - number of units in the system

f(x) - objective function

P_best - Particle best

\{X_1, X_2, \ldots, X_p\} - permissive discrete variables

P - Permutation

\delta_{x_i} - permutation matrix variable

lb - Pounds

Psi - Pounds per square inch

P_i - Power output of unit i

g_j(x) - problem specified behavioral constraints

S_d - Scalar function

x^1, x^2, \ldots, x^d - set of design variables

X - set of each design variable (x_i)

X_i - set of the possible range of values for each design variable

\tau - Shear stress

h - size of weld used in welded beam

\lambda_m - slenderness ratio

C - step reduction coefficient

\Sigma F - sum of fitness of all dogs having fitness value higher than fitness of dog i

T_s - thickness of the cylindrical skin of the pressure vessel

T_h - thickness of the spherical head of the pressure vessel
TCL_{Mk,i,j} - total cost of resource Mk flow between locations i and j
F_t - Total fuel cost
P_D - Total load demand
N_j - total number of joints
P_{Loss} - Transmission loss
f(x_1, x_2, \ldots, x_d) - truss’s weight function
F_u - ultimate tensile strengths
\rho_m - unit weight of the member m
I - vector integer values
Rand - vector of size N having random values varying from 0 to 1
W(\{x\}) - weight of the structure
W - weight of the truss structure
d - wire diameter of the Tension/Compression Spring
XL_i - X coordinate of the locations within the site area
YL_i - Y coordinate of the locations within the site area
F_y - yield tensile strengths
E - Youngs Modulus
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Artificial Bee Colony</td>
</tr>
<tr>
<td>ACO</td>
<td>Ant Colony Optimization</td>
</tr>
<tr>
<td>AGA</td>
<td>Augmented genetic algorithm</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>APPROX</td>
<td>Griffith and Stewart’s successive linear approximation</td>
</tr>
<tr>
<td>ASD – AISC</td>
<td>Allowable Stress Design Code of American Institute of Steel Construction</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>AWD</td>
<td>African Wild Dog</td>
</tr>
<tr>
<td>AWDA</td>
<td>African Wild Dog Algorithm</td>
</tr>
<tr>
<td>BB-BC</td>
<td>Big Bang–Big Crunch</td>
</tr>
<tr>
<td>CP</td>
<td>Charged particle</td>
</tr>
<tr>
<td>CS</td>
<td>Cuckoo Search</td>
</tr>
<tr>
<td>CSLP</td>
<td>Construction Site Layout Planning</td>
</tr>
<tr>
<td>CSS</td>
<td>Charged System Search</td>
</tr>
<tr>
<td>DAVID</td>
<td>Davidon–Fletcher–Powell with a penalty function</td>
</tr>
<tr>
<td>EA</td>
<td>Evolutionary Algorithm</td>
</tr>
<tr>
<td>ED</td>
<td>Economic Dispatch</td>
</tr>
<tr>
<td>EDP</td>
<td>Economic Dispatch Problem</td>
</tr>
<tr>
<td>EP</td>
<td>Evolutionary Programming</td>
</tr>
<tr>
<td>EP-SQP</td>
<td>Hybrid Evolutionary Programming – Sequential Quadratic Programming</td>
</tr>
<tr>
<td>ES</td>
<td>Evolution Strategies</td>
</tr>
<tr>
<td>FA</td>
<td>Fire Fly Algorithm</td>
</tr>
<tr>
<td>FLP</td>
<td>Facility Layout Problem</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
</tbody>
</table>
GP - Genetic Programming
GWS - Glow Worm Swarm
HPSO - Heuristic Particle Swarm Optimization
HS - Harmony Search
HSS - Hybrid Stochastic Search
MMAS-GA - Max-Min Ant System – Genetic Algorithm
NLP - Nonlinear Programming
PS - Powell and Skolnick’s constraint handling method
PSO - Particle Swarm Optimization
PSO-IIW - Particle Swarm Optimization With Improved Inertia Weight
PSOPC - Particle Swarm Optimization with Passive Congregation
PSO-SQP - Particle Swarm Optimization – Sequential Quadratic Programming
RANDOM - Richardson’s random method
SA - Simulated Annealing
SI - Swarm Intelligence
SIMPLEX - Simplex method with a penalty function
TD - Total Distance
TS - Tabu Search
TS-R - Tournament Selection