I. Nonequilibrium Superconductivity

1. Introduction

2. Superconducting ground state and excitations

2.1 Nonequilibrium State

2.2 Longitudinal mode or Energy mode

2.3 Transverse mode or Charge imbalance mode

3. Relaxation Processes

3.1 Relaxation of Charge Imbalance

a) Phonon Scattering

b) Anisotropic Energy Gap

c) Magnetic Impurities

d) Supercurrent

3.2 Order Parameter Relaxation

a) Slow Variation of order parameter

b) Rapid variation of order parameter

4. Enhancement of Superconductivity

4.1 Enhancement by Microwave irradiation

a) Effect of Phonons

b) Effect of Supercurrent

4.2 Enhancement by Phonons

4.3 Enhancement by quasiparticle tunnelling

5. Suppression of Superconductivity

5.1 The μ^* and T^* models

5.2 Optical Illumination
II. Kinetic Equations for a Superconductor

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>74</td>
</tr>
<tr>
<td>2. Quasiclassical Green's Function</td>
<td>76</td>
</tr>
<tr>
<td>3. Basic Equations</td>
<td>77</td>
</tr>
<tr>
<td>4. Dirty Limit Approximation</td>
<td>84</td>
</tr>
<tr>
<td>5. Derivation of Kinetic Equations</td>
<td>87</td>
</tr>
<tr>
<td>5.1 Spectral Functions</td>
<td>91</td>
</tr>
<tr>
<td>5.2 Evaluation of Collision Integrals</td>
<td>105</td>
</tr>
<tr>
<td>6. Generalised Time Dependent Ginsburg-Landau Equation</td>
<td>113</td>
</tr>
<tr>
<td>7. Current Density and Charge Density</td>
<td>124</td>
</tr>
<tr>
<td>8. Local Equilibrium Approximation</td>
<td>127</td>
</tr>
</tbody>
</table>

III. Nonequilibrium Effects in One Dimensional Superconductors

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>138</td>
</tr>
<tr>
<td>2. 2.1 Josephson Effect</td>
<td>138</td>
</tr>
<tr>
<td>2. 2.2 DC and AC Josephson Effects</td>
<td>140</td>
</tr>
<tr>
<td>2. 3 Josephson Junctions</td>
<td>141</td>
</tr>
<tr>
<td>2. 4 Fabrication of the Superconducting Microbridge</td>
<td>144</td>
</tr>
<tr>
<td>3. Phase Slip Centre</td>
<td>146</td>
</tr>
<tr>
<td>3. 1 Skocpol-Beasley-Tinkham Model</td>
<td>149</td>
</tr>
<tr>
<td>3. 2 Interpretation in terms of Chemical Potential</td>
<td>155</td>
</tr>
<tr>
<td>3. 3 Heating Effects</td>
<td>162</td>
</tr>
<tr>
<td>3. 4 Shortcomings of SBf model</td>
<td>166</td>
</tr>
</tbody>
</table>
4. Modified Hot Spot Theory

5. Generalised Theory

6. Nonequilibrium Region in a Phase Slip Centre
 6.1 Relaxation time in presence of depairing
 6.2 Normal-like length of a phase slip centre
 6.3 Effect of Depairing on Relaxation Time
 6.4 Discussions and Conclusions
 6.5 Effects of magnetic field on Phase Slip Centre

7. Interaction of Phase Slip Centres

REFERENCES

IV. Reentrant Ferromagnetic Superconductor

1. Introduction

2. Superconducting / Magnetic properties of ErRh$_4$B$_4$

3. Dissipative state of a reentrant superconductor

4. Experimental Results
 4.1 Sample
 4.2 R - T Characteristics
 4.3 I - V Characteristics

5. Simple Heating Approximation

6. Analysis of Results

7. Thermal Boundary Conductance

REFERENCES
V. Thermal Transport in a Cylindrical Ferromagnetic Superconductor

1. Introduction .. 229
2. Radial Temperature Distribution 230
3. Calculation for Er3Rh$_4$B$_4$ 233
4. Estimates of thermal boundary conductance for a gaseous environment 234

5. Discussion and Conclusion 235

REFERENCES .. 236

THESIS ABSTRACT 238

ACKNOWLEDGEMENTS 243