CHAPTER- I : INTRODUCTION

CHAPTER- II : REVIEW OF LITERATURE

2.1 Genetic variability
2.2 Genetic divergence
2.3 Production of hybrids
2.4 Chemical constituents
2.5 Phytochemical studies

CHAPTER- III : MATERIALS AND METHODS

3.1 Experimental material
 3.1.1 Field trial of twenty seed sources
 3.1.2 Field trial of forty two progenies
3.2 Establishment of germplasm bank
3.3 Experimental methods
 3.3.1 Seed sowing
 3.3.2 Transfer of seedlings
 3.3.3 Field planting
3.4 Soil analysis
3.5 Meteorological information
3.6 Field layout design
 3.6.1 Field trial of twenty seed sources
 3.6.2 Field trial of forty two progenies
3.7 Data collection
 3.7.1 Shoot traits
 3.7.1.1 Number of shoots
 3.7.1.2 Shoot height
 3.7.1.3 Maximum shoot height
 3.7.1.4 Collar diameter
 3.7.2 Root traits
 3.7.2.1 Number of tubers
 3.7.2.2 Tuber length
 3.7.2.3 Tuber diameter
3.8 Estimation of biomass
 3.8.1 Shoot dry weight
 3.8.2 Root dry weight
3.9 Estimation of saponin content
3.10 Statistical analysis
 3.10.1 Mean
3.10.2 Range 38
3.10.3 Standard deviation 38
3.10.4 Coefficient of variation 38
3.10.5 Standard error 39
3.10.6 Analysis of variance 39
 3.10.6.1 Model 39
 3.10.6.2 Skeleton of ANOVA 40
 3.10.6.3. Variance 40
3.10.7 Estimation of coefficient of variation 40
3.10.8 Heritability 42
3.10.9 Genetic advance 42
3.10.10 Genetic gain 43
3.10.11 Correlation and path coefficients 43
 3.10.11.1 Correlation coefficients 43
 3.10.11.2 Path coefficient analysis 44
3.10.12 Genetic divergence 46
 3.10.12.1 Collection of data 47
 3.10.12.2 Test of significance 47
 3.10.12.3 Transformation of correlated variables 48
 3.10.12.4 Computation of D^2 values 48
 3.10.12.5 Testing the significance of D^2 values 48
 3.10.12.6 Contribution of characters towards divergence
 3.10.12.7 Grouping of genotypes 49
 3.10.12.8 Average intra-cluster distances 49
 3.10.12.9 Average inter-cluster distances 50
3.10.13 Principal Component Analysis 50
 3.10.13.1 Association among the variables 51
 3.10.13.2 PCA axis 51
 3.10.13.3 Loadings 51
 3.10.13.4 Scatter diagram 52
 3.10.13.5 Screed plots 52

CHAPTER IV : RESULTS 54-114
4.1 Genetic variability among twenty seed sources 54
 4.1.1 Analysis of variance 54
 4.1.2 Mean performance for various characters 55
 4.1.2.1 Number of shoots 55
 4.1.2.2 Collar diameter 55
 4.1.2.3 Shoot dry weight 55
 4.1.2.4 Maximum shoot height 56
 4.1.2.5 Shoots height 56
4.1.2.6 Number of tubers 56
4.1.2.7 Tuber length 56
4.1.1.8 Tuber diameter 57
4.1.1.9 Tuber dry weight 57
4.1.1.10 Saponin content 57

4.1.3 Coefficient of variability 57

4.1.4 Heritability (broad sense) 60

4.1.5 Genetic advance 60

4.1.6 Genetic gain 62

4.1.7 Correlation coefficients 62
 4.1.7.1 Phenotypic coefficients of correlation (PCC) 62
 4.1.7.2 Genotypic coefficients of correlation (GCC) 64
 4.1.7.3 Environmental coefficients of correlation (ECC) 64

4.1.8 Path analysis 67
 4.1.8.1 Direct and indirect effects on saponin content 67
 4.1.8.2 Direct and indirect effects on tuber dry weight 69

4.1.9 Genetic divergence analysis 73
 4.1.9.1 Clustering pattern 73
 4.1.9.2 Intra and inter-cluster D^2 distance 73
 4.1.9.3 Cluster means 73

4.1.10 Principal component analysis (PCA) 80

4.2 Genetic variability among forty two progenies 80

4.2.1 Analysis of variance 80

4.2.2 Mean performance for various characters 83
 4.2.2.1 Number of shoots 83
 4.2.2.2 Collar diameter 83
 4.2.2.3 Shoot dry weight 83
 4.2.2.4 Maximum shoot height 84
 4.2.2.5 Shoots height 84
 4.2.2.6 Number of tubers 84
 4.2.2.7 Tuber length 84
 4.2.2.8 Tuber diameter 84
 4.2.2.9 Tuber dry weight 85
 4.2.2.10 Saponin content 85

4.2.3 Coefficient of variability 85

4.2.4 Heritability (broad sense) 88

4.2.5 Genetic advance 88

4.2.6 Genetic gain 89
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.7 Correlation coefficients</td>
<td>89</td>
</tr>
<tr>
<td>4.2.7.1 Phenotypic coefficients of correlation (PCC)</td>
<td>89</td>
</tr>
<tr>
<td>4.2.7.2 Genotypic coefficients of correlation (GCC)</td>
<td>92</td>
</tr>
<tr>
<td>4.2.7.3 Environmental coefficients of correlation (ECC)</td>
<td>96</td>
</tr>
<tr>
<td>4.2.8 Path analysis</td>
<td>98</td>
</tr>
<tr>
<td>4.2.8.1 Direct and indirect effects on saponin content</td>
<td>98</td>
</tr>
<tr>
<td>4.2.8.2 Direct and indirect effects on tuber dry weight</td>
<td>101</td>
</tr>
<tr>
<td>4.2.9 Genetic divergence analysis</td>
<td>104</td>
</tr>
<tr>
<td>4.2.9.1 Clustering pattern</td>
<td>104</td>
</tr>
<tr>
<td>4.2.9.2 Intra and inter-cluster D² distance</td>
<td>108</td>
</tr>
<tr>
<td>4.2.9.3 Cluster means</td>
<td>108</td>
</tr>
<tr>
<td>4.2.10 Principal component analysis (PCA)</td>
<td>112</td>
</tr>
</tbody>
</table>

CHAPTER-V : DISCUSSION

5.1 Variability | 117 |
5.2 Co-efficient of variations, heritability and genetic advance | 122 |
5.3 Correlation coefficients | 129 |
5.4 Path analysis | 135 |
5.5 Genetic divergence | 140 |
5.6 Saponin content | 145 |

CHAPTER-VI : SUMMARY

CHAPTER-VII : CONCLUSION

REFERENCES | 155-164|