REFERENCES


49. Dasora, N, Dave, R & Pandey, R 2005, ‘Study of aerosol optical depth at 1020 nm and precipitable water content at Udaipur’, proceedings of First Prof. R. Ananthakrishnan Memorial Conference on Atmospheric Science, Climate Change and Environment Studies, Pune, India.


69. EO1 User Guide 2003, ‘USGS Earth resources observation system data centre EDC’.

70. EO1-DFCB-0003 version 1.0 2006, ‘USGS Hyperion level 1Gst (L1Gst) product output files data format control book (DFCB)’


91. Grove, CI, Hook, SJ, & Paylor, ED 1992, ‘Laboratory reflectance spectra of 160 minerals, 0.4 to 2.0 micrometers’, JPL Publication (Pasadena, California: Jet Propulsion Laboratory), vol. 92, pp. 2.

92. GSI 2006, ‘Detailed information dossier (DID) on iron ores in India’.


129. Kruse, FA 1988, ‘Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern


147. Maliki, AA, Owens, G & Bruceb, D 2012, ‘Capabilities of remote sensing hyperspectral images for the detection of lead contamination: a


199. Scheinost, AC, Chavernas, Barron, V & Torrent, J 1998 ‘Use and limitations of second-derivative diffuse reflectance spectroscopy in
the visible to near-infrared range to identify and quantify Fe oxide minerals in soils’, Spanish Journal of Agricultural Research, vol. 46, pp. 528-536.


218. Tate, SE, Greene, RSB, Scott, KM & McQueen, KG 2007, ‘Recognised characterisation of the aeolian component in soils in the Girilambone Region, north western New South Wales, Australia’, Catena, vol. 69, pp. 122–133.


244. http://www.csr.utexas.edu/projects/rs hrs/hyper.html


