CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>i-ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1-5</td>
</tr>
<tr>
<td>2. Review of Literature</td>
<td>6-39</td>
</tr>
<tr>
<td>2.1 Sources of aspartase</td>
<td>7-10</td>
</tr>
<tr>
<td>2.2 Production aspects</td>
<td>11-13</td>
</tr>
<tr>
<td>2.3 Purification and characterization of aspartase</td>
<td>13-21</td>
</tr>
<tr>
<td>2.4 Immobilization of aspartase producing bacterial strains</td>
<td>22-26</td>
</tr>
<tr>
<td>2.5 Developments of mutant strains</td>
<td>26-28</td>
</tr>
<tr>
<td>2.6 Recombinant aspartase, random and site-directed mutagenesis</td>
<td>29-35</td>
</tr>
<tr>
<td>2.7 Crystal structure of aspartase</td>
<td>35-37</td>
</tr>
<tr>
<td>2.8 Applications of aspartase</td>
<td>37-39</td>
</tr>
<tr>
<td>3. Materials and Methods</td>
<td>40-79</td>
</tr>
<tr>
<td>3.1 Procurement of Chemicals</td>
<td>40</td>
</tr>
<tr>
<td>3.2 Procurement and Maintenance of Reference Cultures</td>
<td>41</td>
</tr>
<tr>
<td>3.3 Plasmid Vectors and Bacterial Strains for Cloning and Expression Studies</td>
<td>41</td>
</tr>
<tr>
<td>3.4 Isolation and Screening of Aspartase Producing Bacterial Strains</td>
<td>42-43</td>
</tr>
<tr>
<td>3.4.1 Collection of effluent samples</td>
<td>42</td>
</tr>
<tr>
<td>3.4.2 Physico-chemical characterization of effluent</td>
<td>42</td>
</tr>
<tr>
<td>3.4.3 Isolation of aspartase producing bacterial strains</td>
<td>42-43</td>
</tr>
<tr>
<td>3.4.4 Screening of bacterial isolates and reference strains for aspartase activity</td>
<td>43</td>
</tr>
<tr>
<td>3.5 Morphological, Physiological and Biochemical Characterization of the Bacterial Isolate NFB-5</td>
<td>43-44</td>
</tr>
<tr>
<td>3.5.1 Colonial morphology and micromorphology</td>
<td>44</td>
</tr>
</tbody>
</table>
3.5.2 Physiological and biochemical characteristics

3.6 16S rDNA Sequencing of *Aeromonas* sp. NFB-5 and Phylogenetic Analysis for Species Specific Identification 44-48

3.6.1 DNA extraction from *Aeromonas* sp. NFB-5 44-46

3.6.2 16S rDNA amplification 46

3.6.3 Purification of PCR product by gel extraction method 46-47

3.6.4 Nucleotide sequencing of PCR product and phylogenetic analysis 48

3.6.5 Bacterial strain submission and nucleotide sequence accession number 48

3.7 Amplification of Aspartase Gene (aspA) 48-53

3.7.1 Designing of primers 48-50

3.7.2 Preparation of primers 50

3.7.3 Amplification of central conserved region using degenerate primers 50-51

3.7.4 Gel extraction (purification) of PCR product 51

3.7.5 Nucleotide sequencing of purified PCR product 51

3.7.6 Amplification of N-terminal and C-terminal region 51-52

3.7.7 Purification of PCR products and nucleotide sequencing 52

3.7.8 Amplification of whole aspartase gene (aspA) 52

3.7.9 Purification of PCR product 52-53

3.8 Amino Acid Sequence Analysis of Aspartase (aspA) Gene 53

3.9 Cloning of Aspartase Gene in pGEM-T DNA Vector 53-59

3.9.1 Preparation and storage of competent cells 53-54

3.9.2 Preparation of ampicillin-LB agar plates 54

3.9.3 Ligation of PCR products with pGEM-T easy vector 54-56

3.9.4 Transformation of aspartase gene containing vector into *E. coli* DH5α competent cells 56-57

3.9.5 Blue white screening and selection of transformed colonies Containing recombinant vector 57

3.9.6 Isolation and preparation of plasmid 57-58

3.9.7 Restriction digestion of recombinant plasmid to confirm the insert 58-59

3.9.8 Nucleotide sequencing of the cloned gene segment and BLAST analysis 59

3.9.9 Nucleotide sequence accession number 59
3.10 Cloning of Aspartase Gene in Expression Vector and screening of clones
3.10.1 Cloning of aspartase gene in expression vector
3.10.2 Screening of clones for aspartase activity
3.11 Optimization of Expression conditions and Media
Supplements for Recombinant Aspartase production
3.11.1 Optimization of IPTG (isopropyl thiogalactoside) concentration for recombinant aspartase expression
3.11.2 Optimization of IPTG induction period
3.11.3 Optimization of biotin concentration for recombinant aspartase expression
3.11.4 Optimization of concentration of dipotassium hydrogen phosphate (K₂HPO₄)
3.11.5 Optimization of concentration of potassium dihydrogen phosphate (KH₂PO₄)
3.12 Production of Recombinant Aspartase at Laboratory Scale Bioreactor
3.13 Purification of Recombinant His-tagged Aspartase
3.14 Characterization of Purified Recombinant Aspartase
3.14.1 Molecular mass determination of purified recombinant aspartase by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)
3.14.2 Effect of pH
3.14.2.1 Optimal pH
3.14.2.2 pH stability
3.14.3 Effect of temperature
3.14.3.1 Optimal temperature
3.14.3.2 Thermal stability
3.14.3.3 Activation energy
3.14.3.4 Temperature quotient (Q₁₀)
3.14.3.5 Half-life (t₁/₂), decimal reduction time (D-value) and Z-value
3.14.3.6 Change in enthalpy, free energy and entropy
3.14.4 Kinetic parameters
3.14.5 Effect of metal ions and EDTA
3.15 Production of L-aspartic Acid from Recombinant E. coli Cells 72-76
 3.15.1 Screening of permeabilization agents 73-74
 3.15.1.1 Effect of Triton X-100 73-74
 3.15.1.2 Effect of isopropanol 74
 3.15.1.3 Effect of ethanol 74
 3.15.1.4 Effect of chloroform 74
 3.15.2 Optimization of permeabilization conditions 74-75
 3.15.2.1 Effect of temperature 74
 3.15.2.2 Effect of treatment time 75
 3.15.3 Production of L-aspartic acid from permeabilized free and homogenized immobilized cells 75-76
3.16 Analytical Techniques 76-79
 3.16.1 Estimation of proteins 76-77
 3.16.2 Cell disruption and aspartase assay 77-78
 3.16.3 Biomass estimation 78
 3.16.4 HPLC analysis of L-aspartic acid 78-79
 3.16.5 Molecular Biology Protocols 79

4. Results and Discussion 80-142
 4.1 Physico-chemical Characterization of Effluent 80-81
 4.2 Isolation and Screening of Aspartase Producing Bacterial Strains 81-83
 4.3 Morphological, Physiological and Biochemical Characterization of the Bacterial Isolate NFB-5 83-86
 4.3.1 Colonial morphology and micromorphology 83-84
 4.3.2 Physiological and biochemical characteristics 84-86
 4.4 16S rDNA Sequencing of Aeromonas sp. NFB-5 and Phylogenetic Analysis for Species Specific Identification 86-91
 4.4.1 DNA extraction from Aeromonas sp. NFB-5 86
 4.4.2 16S rDNA gene sequencing and Phylogenetic analysis 87-91
 4.5 Amplification of Aspartase Gene (aspA) 91-97
 4.5.1 Amplification of central conserved region using degenerate primers 91-93
 4.5.2 Amplification of N-terminal and C-terminal region 93-97
4.6 Amino Acid Sequence Analysis of Aspartase Gene (aspA) 97-99

4.7 Cloning of Aspartase Gene in pGEM-T DNA Vector 100-101
 4.7.1 Blue white screening and selection of transformed colonies containing recombinant vector 100
 4.7.2 Amplification and restriction digestion of the recombinant plasmid to confirm the insert 100-101

4.8 Cloning of Aspartase Gene (aspA) in Expression Vector pET21(b)+ DNA and Screening of Clones 101-102
 4.8.1 Cloning of Aspartase Gene (aspA) in Expression Vector pET21(b)+ DNA 101
 4.8.2 Screening of clones for aspartase activity 101-102

4.9 Optimization of Expression Conditions and Media Supplements for Recombinant aspartase Production 102-106
 4.9.1 Optimization of IPTG (isopropyl thiogalactoside) concentration for recombinant aspartase expression 102-103
 4.9.2 Optimization of IPTG induction time 103-104
 4.9.3 Optimization of biotin concentration for recombinant aspartase expression 104
 4.9.4 Optimization of concentration of dipotassium hydrogen phosphate (K$_2$HPO$_4$) 104-105
 4.9.5 Optimization of concentration of potassium dihydrogen phosphate (KH$_2$PO$_4$) 105-106

4.10 Production of Recombinant Aspartase at Laboratory Scale Bioreactor 106-121
 4.10.1 Central composite rotatable design (CCRD) and analysis of variance (ANOVA) 107-111
 4.10.2 Effect of process parameters on recombinant aspartase production 111-119
 4.10.3 Validation of the model 120-121

4.11 Purification of Recombinant His-tagged Aspartase 121-122

4.12 Characterization of Purified Recombinant Aspartase 122-134
 4.12.1 Molecular mass determination by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 122-123
 4.12.2 Effect of pH 123-125
4.12.2.1 Optimal pH 123-124
4.12.2.2 pH stability 124-125

4.12.3 Effect of temperature 125-131
4.12.3.1 Optimal temperature 125-126
4.12.3.2 Thermal stability 126-127
4.12.3.3 Activation energy 127-128
4.12.3.4 Temperature quotient (Q_{10}) 128
4.12.3.5 Half-life (t_{1/2}), decimal reduction time (D-value) 128-130
and Z-value 128-130
4.12.3.6 Change in enthalpy, free energy and entropy 130-131

4.12.4 Kinetic parameters 131-132
4.12.5 Effect of metal ions and EDTA 132-134

4.13 Production of L-aspartic Acid from Recombinant Cells 134-142
4.13.1 Screening of Permeabilization Agents 134-137
4.13.1.1 Effect of Triton X-100 134-135
4.13.1.2 Effect of isopropanol 135-136
4.13.1.3 Effect of ethanol 136-137
4.13.1.3 Effect of chloroform 137
4.13.2 Optimization of permeabilization conditions 138-139
4.13.2.1 Effect of temperature 138
4.13.2.2 Effect of treatment time 139
4.13.3 Production of L-aspartic acid from permeabilized free
And homogenized immobilized cells 139-142

Summary 143-148

Conclusions 149-150

References 151-169

List of publications 170