Table of Contents

Contents I-IV
List of Tables V-VII
List of Figures VIII-XI
List of Abbreviations XII

CHAPTER 1 Introduction 1-10
1.1 Introduction 1
1.2 Aims and Objectives 5
1.3 Plan of Work 6
1.4 References 8

CHAPTER 2 Literature Review 11-65
2 Oral Drug Delivery 11
2.1 Physiological Considerations of Gastro-intestinal Tract for Oral Delivery of Nanoparticles 14
2.2 Transport of Nanoparticles across the Intestinal Mucosa 16
 2.2.1 Paracellular Transport 17
 2.2.2 Transcellular Transport 18
 2.2.3 Carrier Mediated Transport 19
 2.2.4 Receptor Mediated Transport 19
2.3 Nanoparticles for Anticancer Drug Delivery 21
2.4 Nanoparticles for Antiretroviral Drug Delivery 24
2.5 Method for Preparation of Nanoparticles 29
 2.5.1 Nanoparticles Prepared by Polymerization Process of Monomers 29
 2.5.2 Nanoparticles Prepared from Dispersion of Preformed Polymers 30
2.6 Characterization of Nanoparticles 35
2.7 Biodegradable Polymers 41
2.8 Stabilizers 47
2.9 Drug Profiles 49
 2.9.1 Drug Profile of Gemcitabine HCl 49
 2.9.2 Drug Profile of Lopinavir 54
2.10 References 57

CHAPTER 3 Analytical Methods 66-88
3.1 Materials 66
3.2 Estimation of Gemcitabine HCl by UV Spectroscopy 66
 3.2.1 Calibration Plot in Distilled Water 66
CHAPTER 4 Experimental Gemcitabine HCl Loaded Nanoparticles 89-120

4.1 Introduction 89
4.2 Materials 92
4.3 Equipments 92
4.4 Formulation of Gemcitabine HCl Loaded Nanoparticles by Multiple Emulsification Solvent Evaporation Method 92
4.5 Preliminary Optimization of Parameters 93
4.6 Optimization by Factorial Design 93
4.7 Lyophilization of Gemcitabine HCl loaded Nanoparticles and Optimization of Cryoprotectant 98
4.8 Characterization of Optimized Gemcitabine HCl loaded Nanoparticles 98
4.9 Results and Discussion 4.9.1 Preliminary Optimization 100 4.9.2 Optimization by Factorial Design 102 4.9.3 Optimization of Cryoprotectant for Lyophilization of Nanoparticles 112 4.9.4 Characterization of Gemcitabine HCl Loaded Nanoparticles 113
4.10 References 118
CHAPTER 5 Experimental Lopinavir Loaded Nanoparticles 121-146

5.1 Introduction 121
5.2 Materials 122
5.3 Equipments 122
5.4 Formulation of Lopinavir Loaded Nanoparticles 122
5.5 Preliminary Optimization of Parameters 123
5.6 Optimization by Factorial Design 123
5.7 Optimization Data Analysis 125
5.8 Lyophilization of Lopinavir Loaded Nanoparticles and Optimization of Cryoprotectant 127
5.9 Characterization of Optimized Lopinavir Loaded Nanoparticles 128
5.10 Results and Discussion 129
 5.10.1 Preliminary Optimization 129
 5.10.2 Optimization by Factorial Design 130
 5.10.3 Optimization of Cryoprotectant for Lyophilization of Nanoparticles 131
 5.10.4 Characterization of Lopinavir Loaded Nanoparticles 141
5.11 References 146

CHAPTER 6 In Vitro and Ex Vivo Release Studies 147-160

6.1 In Vitro Release Studies 147
6.2 Ex Vivo Diffusion Studies 147
6.3 Kinetics of Drug Release 147
6.4 Gemcitabine HCl Loaded Nanoparticles 150
 6.4.1 In Vitro Release Studies through Dialysis Membrane 150
 6.4.2 Ex Vivo Release Studies through Rat stomach and Intestinal Segment 150
6.5 Lopinavir Loaded Nanoparticles 151
 6.5.1 In Vitro Release Studies through Dialysis Membrane 151
 6.5.2 Ex Vivo Release Studies through Rat stomach and Intestinal Segment 152
6.6 Results and Discussion 153
 6.6.1 In Vitro Drug Release Studies of Gemcitabine HCl loaded Nanoparticles 153
 6.6.2 Ex Vivo Drug Release Studies of Gemcitabine HCl Loaded Nanoparticles 154
 6.6.3 In Vitro Drug Release Studies of Lopinavir loaded Nanoparticles 155
 6.6.4 Ex vivo Drug Release Studies of Lopinavir Loaded Nanoparticles 156
6.7 References 159