List of Figures

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Map showing location of the study area (a) Outline map of India showing Madhya Pradesh and (b) Location of Balaghat District in Madhya Pradesh.</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Map showing accessibility in the study area.</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Map of showing various surface structures in and around Balaghat manganese deposit.</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Map showing mineral resources of Balaghat district (after District Resource Map, GSI).</td>
<td>10</td>
</tr>
<tr>
<td>1.5a</td>
<td>Bar chart showing annual rain falls of the study area during last 24 years.</td>
<td>12</td>
</tr>
<tr>
<td>1.5b</td>
<td>Bar chart showing month wise average temperature during last 10 years of Balaghat district.</td>
<td>12</td>
</tr>
<tr>
<td>1.6</td>
<td>Map showing land use land cover status of the study area.</td>
<td>15</td>
</tr>
<tr>
<td>1.7</td>
<td>Contour map of the study area.</td>
<td>16</td>
</tr>
<tr>
<td>1.8</td>
<td>Map showing physiography of the study area in 3D.</td>
<td>17</td>
</tr>
<tr>
<td>1.9</td>
<td>Map showing slope amount and direction of the study area in 3D.</td>
<td>18</td>
</tr>
<tr>
<td>1.10</td>
<td>Map showing physiography in and around Balaghat manganese deposit in 3D.</td>
<td>19</td>
</tr>
<tr>
<td>1.11</td>
<td>Map showing various types of soils in the study area.</td>
<td>20</td>
</tr>
<tr>
<td>1.12</td>
<td>Map showing drainage system in the study area.</td>
<td>22</td>
</tr>
<tr>
<td>1.13</td>
<td>Map showing hydrogeology of the study area.</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>Pie-chart showing manganese resources of the World as on 1.4.2010 (Mineral year book 2011, IBM).</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>Map showing major manganese deposits of the World.</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Histogram showing World’s manganese production from 2008-2010</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Map showing the three main manganese bearing zone of India</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Map showing three different types of manganese deposits of India classified on the basis of their mode of occurrence.</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Pie chart showing Indian’s manganese resources as on 1.4.2011</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Map of manganese deposits of the Sausar Group showing three different zones of Balaghat area (modified after Dasgupta et al., 1992).</td>
<td>35</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.8 a</td>
<td>Histogram showing ROM production from 1999-2000 to 2009-10.</td>
<td>36</td>
</tr>
<tr>
<td>2.8 b</td>
<td>Histogram showing cleaned ore production from 1999-2000 to 2009-10.</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Map showing of tectonic units of India a. after Mohanty, 2011; b. after Pradhan et al., 2010</td>
<td>49</td>
</tr>
<tr>
<td>3.1c</td>
<td>Geological map of Central India showing the study area (after Bhowmik et al., 2012).</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Geological map of the Sausar fold belt (after Narayanaswamy et al., 1963)</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Geological map of the study area (modified after Jain et al., 1991)</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Stratigraphic column showing lithostratigraphic units of the Balaghat manganese deposit (after Sarkar et al., 2011).</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>Field photographs showing (a) fine grained granite (b) coarse grained granite gneiss.</td>
<td>58</td>
</tr>
<tr>
<td>3.6</td>
<td>Geological map of Balaghat manganese deposit.</td>
<td>59</td>
</tr>
<tr>
<td>3.7</td>
<td>Field photographs showing (a) boulders in gritty conglomerate and (b) biotite gneiss</td>
<td>60</td>
</tr>
<tr>
<td>3.8 a-b</td>
<td>Field photographs of feldspathic quartzite of Sitasaongi Formation showing thin banding.</td>
<td>60</td>
</tr>
<tr>
<td>3.9</td>
<td>Field photographs of BMnF showing (a) Jasperoid and manganiferous band, and (b) manganese ore confined between sericite schist and feldspathic quartzite.</td>
<td>61</td>
</tr>
<tr>
<td>3.10</td>
<td>Field photograph showing (a) crenulated phyllite and (b) sericite schist.</td>
<td>61</td>
</tr>
<tr>
<td>4.1 a-d</td>
<td>Field photographs showing migmatite and granite gneiss having massive, fine grained character, gneissosity and pegmatite vein</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Photograph of a drill core showing inequigranular granite gneiss composed of very coarse grained orthoclase, smoky quartz, biotite (NQ size core).</td>
<td>64</td>
</tr>
<tr>
<td>4.3 a-b</td>
<td>Field photographs of a coarse granite near Gaikhuri village showing very coarse grained orthoclase, quartz, and biotite.</td>
<td>64</td>
</tr>
<tr>
<td>4.4 a-d</td>
<td>Field photographs of amphibolites of Barbaspur and Gaikhuri village showing fine grained, hard and compact nature, quartz veins of different thickness.</td>
<td>65</td>
</tr>
</tbody>
</table>
4.5 a-f Field photographs of gritty conglomerate showing clasts of granite, gneiss, chert, corundum schist, vein quartz, quartzite, cherty quartzite, orthoclase and muscovite.
4.5 g-h Field photographs of gritty conglomerate showing clasts of granite, gneiss, chert, corundum schist, vein quartz, quartzite, cherty quartzite, orthoclase and muscovite.
4.5 i-j Field photographs of gritty conglomerate intrude by (i) pegmatite vein (j) quartz vein
4.6 Photographs of drill core showing (a) a fine grained schistose quartzite and (b) the contact between feldspathic quartzite and schistose quartzite.
4.7 a-b Field photographs of feldspathic quartzite showing (a) very thin banding, (b) two sets of joints.
4.7 c-d Photograph of feldspathic quartzite showing (c) fractures and (d) dendritic structures of secondary manganese minerals.
4.8 a-b Photograph of BMnF showing alternate bands of jasperoid quartzite, manganiferous quartzite and manganese ore.
4.8 c Underground mine photograph of BMnF showing bands of jasperoid quartzite, manganiferous quartzite with braunite and hollandite.
4.8 d Underground mine photograph of showing grain size variation of braunite.
4.8 e-f Underground mine photomicrograph of braunite showing vein replacement by pyrolusite.
4.8 g Sample photograph showing manganese ore nodule coated by silica.
4.8 h Underground mine photograph of low grade manganese ore with quartz vein (chainage 700 at 10th level underground).
4.9 a-d Field photograph of sericite schist showing compact and fine grained nature, schistosity, two sets of joint and quartz vein.
4.10 a-b Field photographs of phyllite showing thin banding, schistosity, minor folds and crenulation cleavage.
4.10 c-d Photographs of phyllite showing thin banding, schistosity, minor folds and crenulation cleavage.
4.11 a-b Photomicrograph of phyllite showing (a) spessartine garnet with snow ball texture, (b) micro-folding of cleavage (crossed nicols).

4.11c-d Photomicrograph of phyllite showing (c) shapes similar to ‘glass shards’ (crossed nicols), (d) Photomicrograph of sericite schist showing euhedral opaque grains, parallel to foliation planes (crossed nicols).

4.11e Photomicrograph of sericite schist showing rhomb-shaped opaque grains deformed along foliation planes, surrounded by tremolite, actinolite (crossed nicols).

4.11 f Photomicrograph of feldspathic quartzite showing large grains of calcite, microcline and plagioclase feldspar (crossed nicols).

4.11 g Photomicrograph of feldspathic quartzite exhibiting alteration of feldspar to sericite (crossed nicols).

4.11 h Photomicrograph of quartz schist showing foliation defined by fine grains of mica (crossed nicols).

4.12 a Photomicrograph of migmatite showing deformed feldspar which is mostly altered to chlorite and sericite (crossed nicols).

4.12 b Photomicrograph of granite showing inequigranular texture of quartz, orthoclase, plagioclase, microcline and biotite (crossed nicols).

4.12 c Photomicrograph of conglomerate showing matrix mineralogy (crossed nicols).

4.12 d Photomicrograph of conglomerate showing strain free microcline (crossed nicols).

4.13 Photomicrograph of amphibolite showing (a) schistosity, (b) quartz-tremolite, oriented along foliation, (c) quartz grains surrounding by rolled garnet grains, and (d) fractured garnet.

4.14 Photomicrograph of manganese ore showing (a) coarse grained braunite of two generations and hollandite, (b) coarse banding in braunite resembling volcano-sedimentary layering (PPL), (c) massive braunite altered to pyrolusite, and (d) braunite of two generations exhibiting planar features affected by feeble metamorphism.
4.15 Photomicrograph showing (a) broad twins (CPL), (b) deformation twins (CPL), (c) lamellar twins (CPL) and (d) z-shaped fold pattern (CPL).

4.16 Photomicrograph of manganese ore exhibiting (a) pyrolusite replacing manganite in fine laminations (under PPL) and (b) deformation texture (under PPL), (c) veins of jasper and quartz as gangue minerals (under PPL) and (d) bands of jasper as gangue mineral (under PPL).

4.17a Photomicrograph of BMnF showing banded lamination by braunite and jasper (under CPL).

4.17 b Photomicrograph showing granular texture by hollandite and braunite (under PPL).

4.17 c Photomicrograph of manganese ore showing pinch-and-swell texture (under CPL).

4.17 d Photomicrograph of hollandite showing snowball texture (under CPL).

4.18 Photomicrograph of braunite showing (a) vein replacement by pyrolusite (under CPL) and (b) guided penetration texture (under PPL).

4.19 a Photomicrograph showing braunite/psilomelane rim around pyrolusite (under PPL).

4.19 b Photomicrograph showing veins of pyrolusite fills in braunite (under PPL).

4.20 a Photomicrograph of braunite exhibiting sugary texture leaving behind rhombs of calcite (under PPL).

4.20 b Photomicrograph of psilomelane showing colloform texture (under PPL).

4.21 a SEM Photomicrograph showing two different points of hollandite.

4.21 b-c Photograph showing EDS data of (b) point 1 in hollandite (c) point 2 in hollandite.

4.22 a SEM Photomicrograph showing two different points of braunite.

4.22 b Photograph showing EDS data of point 1 in braunite.

4.22 c Photograph showing EDS data of point 2 in braunite.

5.1 Photograph showing XRF machine of MOIL, Balaghat mine.

5.2 Photograph showing pallets for XRF analysis.

5.3 Photograph showing sample preparation machine of Balaghat Mine.

5.4 Photograph showing pellet preparation machine of Balaghat Mine.
5.5 a-d Plots of different types of manganese ore samples and associated host rocks between (a) SiO_2 (Wt %) Vs MnO_2 (Wt %) (b) Al_2O_3 (Wt %) Vs MnO_2 (Wt %), (c) CaO (Wt %) Vs MnO_2 (Wt %) (d) Fe_2O_3 (Wt %) Vs MnO_2 (Wt %).

5.5 e-f Plots of different types of manganese ore samples and associated host rocks between (e) K_2O (Wt %) Vs MnO_2 (Wt %) (f) P_2O_5 (Wt %) Vs MnO_2 (Wt %).

5.6 a-d Plots of different types of manganese ore samples and associated host rocks between (a) Cu (ppm) Vs MnO_2 (Wt %) (b) Ni (ppm) Vs MnO_2 (Wt %). (c) Cr (ppm) Vs MnO_2 (Wt %) (d) Co (ppm) Vs MnO_2 (Wt %).

5.6 e-h Plots of different types of manganese ore samples and associated host rocks between (e) Ba (ppm) Vs MnO_2 (Wt %) (f) Pb (ppm) Vs MnO_2 (Wt %) (g) Sr (ppm) Vs MnO_2 (Wt %) (h) V (ppm) Vs MnO_2 (Wt %).

5.6 i-j Plots of different types of manganese ore samples and associated host rocks between (i) U (ppm) Vs MnO_2 (Wt %) (j) Zn (ppm) Vs MnO_2 (Wt %).

5.7 a Chondrite normalized Trace Element Pattern (after Wood et al., 1979b) of manganese ore samples showing -ve anomaly of Ta and Nb.

5.7 b Primordial mantle normalized Trace Element Pattern (after Taylor et al., 1985) of manganese ore samples showing -ve anomaly of Ta and Nb.

5.8 a PAAS normalized rare earth abundances of manganese ore samples showing strong positive Eu anomaly.

5.8 b NASC normalized rare earth abundances of manganese ore samples showing strong positive Eu anomaly.

5.9 a Relationship between Fe, Mn and ($\text{Co} + \text{Cu} + \text{Ni}$)*10. All the samples of Mn fall within the field of hydrothermal zone.

5.9 b Figure showing relation of silica (SiO_2, wt%)-alumina (Al_2O_3, wt %) in manganese ores. Note the location of some of the samples on hydrothermal side.

5.9 c Relationship between ΣREE and $\text{Co} + \text{Cu} + \text{Ni}$. Most of the manganese samples fall within or very close to the field of hydrothermal deposits.

5.9 d Figure showing Zr/Cr vs Y/P relationships for manganese ores. Note the location of study area samples, falling in hydrothermal area.
5.9 e Relationship between U and Th. Mn samples fall within or very close to the field of hydrothermal deposits.

5.9 f The behavior of Zr and Hf shown in this illustration shows the impact of clastic terrigenous input.

5.9 g Relationship between Rb and Sr shows scatter due to their highly mobile character.

5.9 h Relationship between Cr and Zr showing positive correlation.

5.9 i Relationship between V and Sc showing inference of volcano clastic origin.

5.9 j Relationship between Cr and Co showing positive correlation.

5.9 k Relationship between Ni and Co showing inference of volcano clastic origin.

5.9 l Relationship between Ni and Cr showing inference of volcano clastic origin.

5.9 m-n Relation between REE and other elements. (m) Simultaneous increase of LREE and HREE, (n) Simultaneous increase of Zr and total REE.

5.9 o-p Distribution of (o) Distribution of La against Zr (p) La against U+Th. Both these plots show that La anomalies in the samples.

5.10 a Detailed litholog of drill hole core (BH 62) in Balaghat manganese ore deposits with graphical presentation showing percentage of Mn, P and SiO2 in different depths.

5.10 b Detailed litholog of drill core (BH 65) in Balaghat manganese ore deposits with graphical presentation showing percentage of Mn, P and SiO2 in different depths.

5.10 c Detailed litholog of drill core (BH 68) in Balaghat manganese ore deposits with graphical presentation showing percentage of Mn, P and SiO2 in different depths.

6.1 a Field photograph showing bedding in phyllite.

6.1 b Field photograph of sericite schist showing well developed bedding.

6.2 a Field photograph of phyllite showing minor recumbent fold.

6.2 b Underground mine photograph of the manganese ore showing minor recumbent fold.

6.2 c Field photograph showing symmetrical folds in phyllite.
6.2 d Underground photograph showing symmetrical folds in manganese ore.
6.2 e Field photograph of phyllite showing inclined isoclinal fold.
6.2 f Field photograph of phyllite showing inclined isoclinal fold.
6.2 g Sample photograph of phyllite showing crenulation cleavage.
6.2 h Photograph of hand specimen showing crenulation cleavage in phyllite.
6.2 i Underground mine photograph of manganese ore showing overturned fold
6.2 j Underground mine photograph of manganese ore showing overturned fold
6.2 k Underground mine photograph showing drag fold, and the relative differential motion (X and Y).
6.2 l Underground mine photograph showing asymmetrical folding in manganese ore.
6.2 m Photograph of hand specimen showing minor folds in phyllite.
6.2 n Field photograph showing S-shaped folds in phyllite.
6.3 a Field photograph of quartzite showing foliation.
6.3 b Field photograph showing foliation in phyllite.
6.4 a Field photograph showing lineation in phyllite.
6.4 b Field photograph showing lineation in sericite schist.
6.5 a Map showing fault at chainage 8400 in old open cast mine area.
6.5 b Cross section showing fault at 4th level underground.
6.5 c Field photograph showing minor fault in pegmatite vein intruded in granite.
6.5 d Field photograph showing minor fault in phyllite.
6.6 a Field photograph of phyllite showing two set joint.
6.6 b Field photograph of sericite showing two set joint.
6.6 c Field photograph showing two sets of joint on feldspathic quartzite in south section.
6.6 d Underground mine photograph manganese ore showing four set of joint breaking in sugar cube form.
6.7 Map showing regional structure of the study area (after GSI).
6.8 Geological Cross Section along XY (after GSI).
6.9 a Field photograph showing quartz veins in granite at Gaikhuri.
6.9 b Field photograph showing intrusion of pegmatite in granite at Gaikhuri.
6.10 a Geological map of the Banded Manganese Formation between 15 crosscut to 13 crosscut at the 10th underground level (200 m depth).
6.10 b Underground map showing flat dips between 25 crosscut to 27 crosscut at the 10th level.
6.10 c Underground map showing steep dips between 48 cross cut to 49.50 cross cut at the 10th level.
6.10 d Underground map showing general strike of the ore body at the 6th level.
6.10 e Underground map showing pinch-and-swell behavior of the ore body at the 7th level.
6.10 f Map showing pinching and swelling behavior of the ore body at the 8th level.
6.10 g Map showing folds in the north part at the 9th level.
6.10 h Map showing folds in the north part at the 10th level.
6.10 i Map showing one limb of the recumbent fold at the 11th level.
6.11 a Cross section of winze 7 from 9th to 10th level showing very sallow dip.
6.11 b Cross section of winze 13 from 9th to 10th level showing very sallow dip.
6.11 c Cross section of winze 31 from 9th to 10th level showing very sallow dip.
6.11 d Cross section of winze 43.5 from 9th to 10th level showing steep dip in the south part of the deposit.
6.11 e Cross section of winze 52.5 from 9th to 10th level showing steep dip in the south part of the deposit.
6.11 f Cross section of winze 35 from 9th to 10th level showing recumbent fold in the north part of the deposit.
6.12 Longitudinal vertical section showing existing and future levels of the Balaghat mine, structurally deposit is massive, continuous, extremely folded and jointed.
6.13 a Cross section at chainage 6100 along borehole no 15 and 35 showing steep dip.
6.13 b Cross section at chainage 5400 along borehole no 57 showing flattening of dip at depth forming a synclinal structure.
6.13 c Cross section at chainage 800 along borehole no 25 showing trace of recumbent fold.
6.13 d Cross section at chainage 1300 along borehole no 68 and 69 trace of recumbent fold.
6.13 e Cross section at chainage 1700 along borehole no 29 trace of recumbent fold.
6.13 f Cross section at chainage 2300 along borehole no 50 trace of recumbent isoclinal fold.
6.13 g Cross section at chainage 8400 along borehole no 22 showing small scale fault at 16.5th level.
6.13 h Cross section at chainage 4500 along borehole no 63 and 66 showing pinch-and-swell structure.
6.14 Underground map of various levels showing different phase of deformation in Balaghat manganese deposit.
7.1 a Relationship during marine transgression showing narrow zone of Mn accumulation and concentration of dissolved Mn in water column.
7.1 b Relationship during marine regression with abundant diagenetic remobilization and wide zone of final Mn precipitation.
7.1 c Manganese sedimentation in coastal zone of intercratonic basin, showing veil effect (flocculent and fall from saline mixing and broom effect (bottom transport and concentration) from tidal activity (after Frakes and Bolton 1984).
7.2 a-c Schematic representation of Mn deposition related to sea level changes (after Calvert and Pedersen, 1993).
7.3 A genetic model Balaghat manganese deposit showing the deposition of manganese formations in different water depths on a marine shelf during initial sea-floor spreading (modified after Manikyamba and Naqvi 1995).
7.4 Metallogenetic model showing the evolutionary pattern of different types of manganese ores in the Balaghat manganese deposit.
8.1 Bird’s eye view photograph showing location of Edward’s shaft, Holme’s shaft, Production shaft and other important surface mine developmental structures of Balaghat manganese deposit.
8.2 a-b Underground mine photographs showing drilling by jack hammer drill machine on (a) face for development of ore drive, (b) sericite schist (waste rock of hanging wall) for development of haulage road.

8.2 c Schematic diagram showing drill holes pattern in development face of haulage roads and cross cuts.

8.3 a-b Underground mine photographs showing drilling operation by jack hammer drill machine for production on (a) side wall (b) footwall.

8.4 Photograph showing underground blasting in BMnF in Balaghat manganese deposit.

8.5 a-b Underground mine photographs showing dressing of (a) sidewall (b) roof.

8.6 a-b Underground photographs showing mechanized mucking by (a) side discharge loader (b) Load Haul Dumper in north part of Balaghat mine.

8.6 c-d Underground photograph showing (c) manual mucking in ore chute (d) chute gate, at south part of Balaghat mine.

8.7 a-b Underground photographs showing transportation by (a) Grand by cars (b) betray loco.

8.8 a Schematic diagram of two stope blocks showing development of haulage road way and cross cuts at 45.00 m interval (Plan view).

8.8 b Systematic diagram of two stope blocks showing stripping of leading mining, 3 m height (longitudinal vertical section view).

8.8 c Cross sectional view of a systematic diagram showing stripping of leading mining, 3 m height.

8.8 d Plan view of two different stopes blocks showing position of rib pillar and rock bolt supports in a 2 X 2 m grid pattern.

8.8 e Plan view of two different stope blocks showing skin ore of 0.5 m.

8.8 f Longitudinal vertical sectional view of a systematic diagram showing waste rock filling in excavated area.

8.8 g Schematic diagram of cross section showing rock bolts and cable bolts operation.

8.8 h Longitudinal vertical section showing construction of man way and ore pass.
8.8 i-j Underground mine photograph showing (i) concrete man way (j) steel man way.

8.8 k Longitudinal vertical section showing blasted muck in stope.

8.8 l Schematic diagram of longitudinal vertical section showing sand filling in stope.

8.8 m Systematic diagram cross section showing continuous stoping operation on a stope.

8.9 Schematic diagram showing north sand stowing plant of Balaghat manganese deposit.

8.10 Schematic diagram showing system of roof bolting in Balaghat manganese deposit.

8.11 a Underground mine photograph showing roof bolting and cable bolting in 2 X 2 m grid pattern.

8.11 b Underground mine photograph showing concrete support at cross cut.

8.12 a Schematic diagram showing cable bolting operation of Balaghat manganese deposit.

8.12 b-d Under mine photograph showing drilling operation by (b) Simba drilling machine for cable bolting (c) cements grouting by grouting machine (d) cable cutting operation.

8.13 Underground mine photograph showing waste filling generated from haulage and cross cut.

8.14 Underground mine photograph showing timber support used for firmly pressed in position against the roof and floor or hanging.

8.15 Underground mine photograph showing in situ ore pillar left for natural support to the ore for better strata control (rib pillar).

8.16 Underground mine photograph showing chock support for immediate artificial support.

8.17 Flow diagram showing the various processes at manganese beneficiation plant of Balaghat manganese deposit (source: MOIL).
8.18 a-d Photograph showing (a) manganese ore beneficiation plant (b) vibro grizzly (c) main conveyor (d) jaw crasher.

8.19 a-d Photograph showing (a) hand picking on conveyor belt (b) feeding of material (+6 mm to -25 mm) into jig (c) spiral classifier (d) air pulsation in jig bucket

8.19 b Photograph showing feeding of material (+6 mm to -25 mm) into jig.

8.20 a-b Photograph showing discharge of (a) reject product of coarse jig (b) finished product.

8.21 a-b Diagram showing (a) fundamental forces at work in a jig bed (b) fundamental forces act to both separate and re-mix the ore (after Jonkers, 2007).

8.22 Photograph of beneficiation tree showing the product and their rejects of Mn ore in Balaghat manganese deposit.

8.23 a Photograph showing Final product of lumpy ore (48% Mn).

8.23 b Photograph showing reject of lumpy ore (11-12% Mn).

8.23 c Photograph showing final product of coarse jigg ore (48.5% Mn).

8.23 d Photograph showing reject of coarse Jigg (14-15% Mn).

8.23 e Photograph showing Final product of fine jigg ore (46.5% Mn).

8.23 f Photograph showing Reject of Fine Jigg (8-10% Mn).

9.1 Geological map of Balaghat mine showing location of boreholes drilled up to 2012 with the location of production shaft and two lease-hold areas. Note that borehole 22 in the south and borehole 25 in north are proving the strike extension of the deposit.

9.2 Geological map of Balaghat mine showing level of intersection drilled up to 2012, borehole 70 in central part of the deposit is the deepest one proving - 290 m MRL.

9.3 Geological map of Balaghat mine showing quality of boreholes drilled up to 2012. In all boreholes Mn is ranging from 30-46%, SiO$_2$ 10-35 %, Fe 2-6% and P 0.33 to 0.007 respectively.

9.4 a Schematic diagram showing various types of non coring bits, bits are generally used in shallow depth.
<table>
<thead>
<tr>
<th>9.4 b-c</th>
<th>Photographs showing rock roller bit (Non-coring type), are used in pebbly beds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5 a</td>
<td>Photograph of diamond bits showing various sizes of casing bits.</td>
</tr>
<tr>
<td>9.5 b</td>
<td>Photograph showing various sizes of diamond bits with reaming shell (Wire line bits).</td>
</tr>
<tr>
<td>9.6 a</td>
<td>Photographs showing various sizes of T. C. bits.</td>
</tr>
<tr>
<td>9.7</td>
<td>Photographs showing NQ and BQ core barrel.</td>
</tr>
<tr>
<td>9.8</td>
<td>Photographs showing NQ and BQ inner tube.</td>
</tr>
<tr>
<td>9.9</td>
<td>Photographs showing drilling rods used during drilling operation.</td>
</tr>
<tr>
<td>9.10</td>
<td>Photographs showing accessory used in wire line drilling operation.</td>
</tr>
<tr>
<td>9.11</td>
<td>Photograph showing water swivel and hoisting plug.</td>
</tr>
<tr>
<td>9.12</td>
<td>Photograph showing cashing (NX Size).</td>
</tr>
<tr>
<td>9.13</td>
<td>Photograph showing surface arrangement of drilling unit used around Balaghat manganese deposit.</td>
</tr>
<tr>
<td>9.14 a</td>
<td>A close photograph showing fractured manganese ore in core box of Balaghat manganese deposit.</td>
</tr>
<tr>
<td>9.14 b</td>
<td>Photograph showing cores of sericite schist in core box of Balaghat manganese deposit.</td>
</tr>
<tr>
<td>9.15 a</td>
<td>Diagram showing core box arrangement in serpentine pattern.</td>
</tr>
<tr>
<td>9.15 b</td>
<td>Diagram showing core box arrangement in Box pattern that is most widely practiced in the study area.</td>
</tr>
<tr>
<td>9.16 a</td>
<td>Diagram showing litholog of borehole numbers 52, 67, and 59 drilled at Balaghat mine depicting the ore-bearing zones at different levels.</td>
</tr>
<tr>
<td>9.16 b</td>
<td>Diagram showing litholog of borehole numbers 46, 68, 62, and 63 drilled at Balaghat mine depicting the ore-bearing zones at different levels.</td>
</tr>
<tr>
<td>9.16 c</td>
<td>Diagram showing litholog of borehole numbers 65, 48, and 57 drilled at Balaghat mine depicting the ore-bearing zones at different levels.</td>
</tr>
<tr>
<td>9.17 a-d</td>
<td>Solid Ore body model of Balaghat manganese deposit showing three dimensional extent of manganese mineralization, viewed from (a) north western side of the deposit (b) northern side of the deposit (c) longitudinal vertical view (d) southern side of the deposit (after CMPDI 2012).</td>
</tr>
</tbody>
</table>
9.18 Pie chart showing the in-situ ore reserves of different categories at Balaghat mine as per UNF classification as on 1.4.2012.

9.19 Longitudinal section showing level wise, category wise ore reserve status of Balaghat mine as per UNF classification.

9.20 Map showing area of influence at 50 m, 75 m and 100 m interval of borehole drilled and proposed drilling in underground area.

9.21 Map showing location of proposed borehole of Balaghat manganese deposit.