Chapter 1: Introduction.

1.1 Motivation 1
1.2 Literature Review 8
1.3 Qualitative FDI 14
1.4 Quantitative model based FDI 15
1.5 Fault Isolation Problem 17
1.6 Contribution of the Thesis 19
1.7 General Assumptions of the Thesis 20
1.8 Organisation of the Thesis 20

Chapter 2: System Identification and Qualitative Fault Isolation of Hydrostatic Transmission System.

2.1 Introduction 21
2.2 Hydrostatic Transmission System 21
 2.2.1 System Description 21
 2.2.2 Modelling of the System 24
2.3 System Identification 27
 2.3.1 Nonlinear Regression Analysis 27
 2.3.2 Validation of System Identification 29
2.4 Qualitative FDI using Fault Tree 31
2.5 Qualitative FDI using TCG 36
Chapter 3: Single Fault Isolation using Unknown Input Observer.

3.1 Introduction 45
3.2 Unknown Input Observer 44
3.3 Application to Benchmark System 46
 3.3.1 System Modeling 46
 3.3.2 UIO for Fault Signature 49
 3.5.3 Multi Tier Model with UIO for Single Fault Isolation 52
3.4 Application to Hydrostatic Transmission System 59
 3.4.1 UIO for Fault Signature (HST system) 62
 3.4.2 Multi Tier Model with UIO for Single Fault Isolation (HST) 66
3.5 Conclusions 71

Chapter 4: Robust Quantitative Single Fault Isolation of an HST System.

4.1 Introduction 72
4.2 Adaptive Threshold for Robust Residual 73
4.3 Validation of Robust Single Fault Isolation through model simulation 79
4.4 Experimental Validation of robust Single Fault Isolation 82
4.5 Conclusions 83
Chapter 5: Robust Single Fault Diagnosis and Prognosis for a System Associated with Singularity Problem.

5.1 Introduction 84

5.2 Parameter Estimation 84

5.3 Example 1: Belt Conveyor System 85
 5.3.1 System Modeling 85
 5.3.2 FDI 88
 5.3.3 Validation through Simulation 92

5.4 Example 2: A Hoisting Mechanism 95
 5.4.1 System Modeling and Model Based FDI 95
 5.4.2 Robust Fault Diagnosis 99
 5.4.3 Second Level Decision Procedure 105
 5.4.4 Prognostic Analysis 110

5.5 Conclusions 112

Chapter 6: Robust Fault Detection and Isolation of Hybrid System with Uncertain Parameters.

6.1 Introduction 113

6.2 ARRs and GARRs 114

6.3 Application to Thermo Fluid Process 114
 6.3.1 Process and Instrumentation 114
 6.3.2 BG Model of Hybrid Thermo Fluid System 117
 6.3.3 Fault Indicators 120
 6.3.4 Adaptive Threshold for Robust Diagnosis 122
6.4 Validation through Simulation 126
 6.4.1 Simulation of System Responses 126
 6.4.2 Fault Detection and Isolation 129
 6.5 Conclusions 134

Chapter 7: Robust Multi-fault Diagnosis for anHST System.

 7.1 Introduction 135
 7.2 Localization of Fault Subspace 136
 7.3 Fault Isolation by Parameter Estimation 137
 7.4 Multifault Isolation for an HST System 138
 7.5 Validation through Simulation and Experimentation 140
 7.6 Application to Servo Valve Controlled Motor Transmission System 146
 7.6.1 The System 146
 7.6.2 BG Model 147
 7.7 Multi Parameter Estimation Problem Associated with Singularity 149
 7.7.1 ARRs and FSM 150
 7.8 Validation through Simulation 152
 7.9 Conclusions 154

Chapter 8: Fault Accommodation through Reconfiguration and Fault Tolerant Control.

 8.1 Introduction 155
 8.2 A Thermofluid Process with Fault Accomodation 156
 8.2.1 Determination of Direct and Deduced Redundancy 158
8.2.2 Fault Indicators 159
8.2.3 Sensor and Actuator loss 160
8.3 Fault Accomodation 161
8.4 Validation through Simulation 163
8.5 An HST System with FTC 169
8.6 Fault Quantification 171
8.7 Fault Accommodation through System Inversion and FTC 172
 8.7.1 System Inversion 173
 8.7.2 Actuator Sizing 175
 8.7.3 Validation of FTC through Simulation 176
8.8 Conclusions 179

Chapter 9: Summary and Conclusions.

 9.1 Summary and Conclusions 180

Bibliography 182