REFERENCES


References not seen in original.
Fig. 1. Mixed inflorescence of *A. sativum* bearing bulbils and flowers.

Fig. 2. Mixed inflorescence of *A. cepa* var. *viviparum* bearing bulbils and flowers.
Figs. 3 to 19. Effect of gamma rays on morphology of *A. sativum* and *A. cepa* var. *viviparum* (Treatments applied are given in the parenthesis).

Fig. 3. Plants of *A. sativum* showing chlorophyll deficiency (0.3 kR).

Fig. 4. A plant of *A. sativum* showing leaf fusion (0.4 kR).
Fig. 5 to 17.. Effect of gamma rays on morphology of A. sativum

Fig. 5 to 7.. Plants showing leaf fusion (0.3 kr)
Fig. 8 .. A plant showing fusion between scape and leaves (0.3 kr)
Fig. 9 .. A plant with short and broad leaves (0.4 kr)
Fig. 10 .. A plant showing creeping habit (0.4 kr)
Fig. 11 .. A plant with forked leaves (0.3 kr)
Fig. 12 .. A plant with crinkled leaves (0.3 kr)
Fig. 13 .. A plant showing leaf with two midribis (0.3 kr)
Fig. 14 .. An inflorescence after dES treatment (30 mm)
Fig. 15 .. An inflorescence after dES treatment (25 mm)
Fig. 16 .. An inflorescence after EMS treatment (100 mm)
Fig. 17 .. An inflorescence after EMS treatment (200 mm)

Fig. 18 and 19.. Effect of gamma rays on morphology of A. cepa var. viviparum

Fig. 18 .. A plant showing leaf fusion (0.4 kr)
Fig. 19 .. A plant showing bifurcated leaves (0.4 kr)
Fig. 20. Somatic chromosomes of *A. sativum* with 16 chromosomes.

Fig. 21. Mean idiogram of somatic chromosomes of *A. sativum* (Scale 10 μm).

Fig. 22. Somatic metaphase of triploid *A. ceca* var. *viviparum* with 24 chromosomes.

Fig. 23. Mean idiogram of somatic chromosomes of *A. ceca* var. *viviparum* (Scale 10 μm).

Figs. 24-29. Effect of various mutagens on somatic chromosomes of *A. sativum* and *A. ceca* var. *viviparum* (Treatments applied are given in the parenthesis).

Figs. 24 to 27. Chromosomal breakages in *A. sativum* as a result of gamma ray treatment.

Figs. 24 and 25. Chromosomal breakages at anaphase (0.3 kR).

Fig. 26. Laggards at telophase (0.3 kR).

Fig. 27. Dot like fragments at anaphase (0.4 kR).
Fig. 28 to 36. Chromosomal breakages and formation of chromatin bridges as a result of various treatments given.

Fig. 28. A cell of *A. sativum* at anaphase. Mark a large number of dot like fragments (0.5 kR).

Fig. 29. A cell of *A. sativum* at anaphase with a lagging chromosome forming a loop like structure (dES, 30 mM, 3HT).

Fig. 30. A cell of *A. cepa* var. *viviparum* at late anaphase with dot like fragments (0.4 kR).

Fig. 31. A cell of *A. cepa* var. *viviparum* at late anaphase with laggards (0.5 kR).

Fig. 32. A cell of *A. cepa* var. *viviparum* at anaphase, Mark extreme fragmentation (0.5 kR).

Fig. 33. A cell of *A. cepa* var. *viviparum* at anaphase with chromosomal breakages (EMS; 300 mM, 4HT).

Fig. 34. A cell of *A. sativum* at telophase with a large number of chromatin bridges (0.3 kR).

Fig. 35. A cell of *A. sativum* with a laggard and a chromatin bridge at telophase (EMS; 200 mM, 8HT).

Fig. 36. A cell of *A. sativum* with a bridge and four micronuclei at telophase (0.3 kR).
Figs. 37 to 39  . .  Formation of chromatin bridges as a result of gamma ray treatment

Fig. 37  . .  A cell of *A. cepa* var. *viviparum* at late anaphase with a number of bridges (0.5 kR)

Fig. 38  . .  A cell of *A. cepa* var. *viviparum* at telophase with a dicentric bridge (0.5 kR)

Fig. 39  . .  A cell of *A. sativum* at anaphase with two dicentric chromatin bridges and two fragments (0.4 kR)

Figs. 40 to 50  . .  Formation of ring chromosomes, fragments and chromatin bridges as a result of various treatments given.

Fig. 40  . .  A cell of *A. sativum* at prophase showing 3 rings (dES; 25 mM, 3H7)

Fig. 41  . .  A cell of *A. sativum* at early prophase. Mark a single ring chromosome (0.4 kR)

Fig. 42  . .  A cell of *A. cepa* var. *viviparum* at prophase with a single ring chromosome (0.5 kR)

Fig. 43  . .  A cell of *A. sativum* at metaphase showing four small rings (0.5 kR)

Fig. 44  . .  A cell of *A. sativum* at anaphase with a single ring chromosome (0.5 kR)

Fig. 45  . .  A cell of *A. cepa* var. *viviparum* at late anaphase with a large dicentric ring (0.4 kR)

Fig. 46  . .  A cell of *A. cepa* var. *viviparum* at telophase with a small dicentric ring, dicentric chromatin and a number of fragments (0.4 kR)

Fig. 47  . .  A cell of *A. sativum* at telophase with a small dicentric ring and a fragment (0.4 kR)

Fig. 48  . .  A cell of *A. cepa* var. *viviparum* at telophase with a ring and a fragment (0.5 kR)

Fig. 49  . .  A cell of *A. sativum* at telophase with a single ring and fragments (0.5 kR)

Fig. 50  . .  A cell of *A. sativum* at telophase with a single ring, a fragment and a number of chromatin bridges at telophase (0.5 kR)
Figs. 51 to 58: Spindle anomalies as a result of various treatments given

Fig. 51: A cell of *A. sativum* at metaphase showing chromosomal groupings (dcS; 30 mm, 3HT)

Fig. 52: A cell of *A. cepa* var. *viviparum* at metaphase with two groups of chromosomes (0.5 kHz)

Fig. 53: A cell of *A. cepa* var. *viviparum* at metaphase with three groups of chromosomes (dcS; 30 mm, 2HT)

Fig. 54: A cell of *A. cepa* var. *viviparum* at anaphase (ems, 300 mm, 4HT)

Fig. 55: A cell of *A. sativum* at anaphase (ems, 300 mm, 4HT)

Figs. 56 and 57: Cells of *A. cepa* var. *viviparum* showing split anaphases (dcS; 30 mm, 4HT and ems; 100 mm, 4HT respectively)

Fig. 58: Cell of *A. sativum* showing split anaphase (dcS; 30 mm, 4HT)
Figs. 59 to 61. Cells of *A. sativum* showing split anaphases (EMS; 300 mM, 4HT; 0.5 kR and dES 30 mM, 3HT respectively)

Figs. 62 to 65. C-metaphases as a result of various treatments given.

Fig. 62. A cell of *A. sativum* (EMS; 100 mM, 8HT)

Figs. 63 to 65. Cells of *A. cepa* var. *viviparum* (EMS; 200 mM, 4HT and 100 mM, 4HT and dES 25 mM, 3HT respectively)
Fig. 66 to 79  Special anomalies as a result of treatment with gamma rays

Fig. 66  A cell of *A. sativum* with two chromatids forming a bivalent like structure and a number of dot like fragments (0.5 kR)

Figs. 67 and 68  Cells of *A. sativum* showing bivalent like structures at anaphase and telophase respectively (0.4 kR and 0.5 kR respectively)

Figs. 69 and 70  Cells of *A. sativum* showing bivalent like structures and a fragment at telophase and late anaphase respectively (0.5 kR and 0.3 kR respectively)

Fig. 71  A cell of *A. cepa* var. *viviparum* at telophase with a bivalent like structure (0.4 kR)

Fig. 72  A cell of *A. cepa* var. *viviparum* with a bivalent like structure, a ring chromosome and a number of bridges (0.5 kR)

Fig. 73  A cell of *A. sativum* with a ring and two bivalent like structures (0.5 kR)

Fig. 74  A cell of *A. sativum* with a bridge and number of chromatids joined end to end (0.5 kR)

Fig. 75 and 76  Cells of *A. sativum* at anaphase showing fusion of number of chromatids at ends (0.4 kR)

Fig. 77  A cell of *A. sativum* at anaphase with tripolar spindle (0.4 kR)

Fig. 78  A cell of *A. sativum* at telophase. Mark a loop like structure (0.4 kR)

Fig. 79  A cell of *A. cepa* var. *viviparum* at telophase with a fragment and a bivalent like structure (0.4 kR)
Figs. 88 and 89. Two PMC\(^\text{a}\)s at metaphase-I with SII + 1VI (0.3 kR) and SII + 1VI (0.4 kR).

Fig. 90. A PMC at diakinesis showing SII + 1VI (30 mm, dES).

Fig. 91. A PMC at metaphase-I with chromosome fragments (0.4 kR).

Fig. 92. A PMC at late anaphase-I with a chromatin bridge (Ems, 3._m).

Fig. 93. A PMC at anaphase-I with a chromatin bridge and a number of chromosomal fragments (0.4 kR).

Fig. 94. A PMC at late anaphase-I with two chromatin bridges, laggards and a small ring (0.4 kR).

Fig. 95. A PMC at anaphase-I with chromatin bridge and laggards (Ems, 20 mm).

Fig. 96. A PMC at telophase-I with a number of lagging chromosomes (0.4 kR).

Fig. 97. A PMC at anaphase-I with a number of fragments and bridges (0.4 kR).

Fig. 98. A PMC at anaphase-I with lagging chromosomes (0.4 kR).

Fig. 99. One of the dyads at anaphase-II.
Figs. 100 to 102. PMC at anaphase-I with lagging chromosomes (0.3 kR; EMS 200 mM and 300 mM) respectively.

Fig. 103. A PMC at telophase-I with 2 lagging chromosomes (0.4 kR).

Fig. 104. A PMC at telophase-I with number of micronuclei (0.3 kR).

Fig. 105. A PMC at anaphase-II showing unequal segregation of chromosomes (0.1 kR + 30 mM dES).
Fig. 106. Effect of gamma rays on germination and survival of *A. sativum* and *A. ceba var. viviparum*. Y-axis represents percentage.

- Germination percentage *A. sativum* 
- Germination percentage *A. ceba var. viviparum* 
- Survival percentage *A. sativum* 
- Survival percentage *A. ceba var. viviparum*

Fig. 107. Effect of gamma rays on mitotic index of *A. sativum* and *A. ceba var. viviparum*.

Y-axis represents mitotic index.

- *A. sativum* 
- *A. ceba var. viviparum*

Figs. 108 and 109. Effect of dCS and EMS immediately after treatment and after recovery on mitotic index of *A. sativum* and *A. ceba var. viviparum* respectively.

Y-axis represents mitotic index.

- *A. sativum* without recovery 
- *A. sativum* after recovery 
- *A. ceba var. viviparum* without recovery 
- *A. ceba var. viviparum* after recovery