LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Flow chart describing various steps involved in solid-state reaction</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>(a) AC voltage applied to capacitor with a dielectric between the plates</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>(b) The current leads the applied voltage by ((90° - \delta))</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Nyquist plot of a resistor and capacitor in parallel and the corresponding equivalent circuit</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic of dual arc impedance plot</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>(a) The impedance plot for an ideal polycrystalline sample and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) the corresponding equivalent circuit</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison of XRD patterns of (a) LS(_1) and (b) LS(_2) and</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>(c) L(_2)S ceramics at room temperature</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of the FE-SEM micrographs of (a) LS(_1) and</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>(b) LS(_2) in different magnifications at room temperature</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Variation of relative dielectric constant ((\varepsilon)) and loss tangent ((\tan\delta)) with frequency at room temperature for (a) LS(_1) (Li(_2)SiO(_3)), (b) LS(_2) and (c) L(_2)S ceramics</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Variation of dielectric constant ((\varepsilon)) of (a) LS(_1), (b) LS(_2) and (c) L(_2)S with temperature at different frequencies ((1\ \text{kHz} - 1\ \text{MHz}))</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparison of variation of dielectric loss ((\tan\delta)) of (a) LS(_1), (b) LS(_2) and (c) L(_2)S ceramics with temperature at different frequencies</td>
<td>29-30</td>
</tr>
<tr>
<td>3.6</td>
<td>Nyquist plot of LS(_1) (Li(_2)SiO(_3)) ceramic at 250 °C with equivalent circuit. (b) Nyquist plots of LS(_1) (Li(_2)SiO(_3)) ceramic at three different temperatures with equivalent circuit ((\text{inset}))</td>
<td>31</td>
</tr>
<tr>
<td>3.7</td>
<td>(a) Nyquist plot of LS(_2) ceramic at two different temperatures</td>
<td></td>
</tr>
</tbody>
</table>
List of figures

3.8 Variation of real part of impedance (Z') of (a) LS$_1$ and (b) LS$_2$ samples as a function of frequency..32

3.9 Variation of imaginary part of impedance (Z'') of (a) LS$_1$ and (b) LS$_2$ as a function of frequency...34

3.10 Variation of relaxation time (τ) of (a) LS$_1$ and (b) LS$_2$ ceramic as a function of temperature...35

3.11 Variation of ac conductivity ($\ln\sigma_{ac}$) as a function of inverse of absolute temperature ($10^3/T$) at different frequencies for (a) LS$_1$ (Li$_2$SiO$_3$), (b) LS$_2$ and (c) L$_2$S ceramics..36-37

3.12 Frequency dependence of ac conductivity (σ_{ac}) at various temperatures for (a) LS$_1$ (Li$_2$SiO$_3$) ceramic and (b) LS$_2$ ceramic............39

3.13 Variation of bulk density of Li$_2$SiO$_3$ ceramic with sintering temperature….40

3.14 (a) variation of dielectric constant (ε_r) of all the samples with frequency at room temperature (35 °C) (b) variation of loss tangent (tanδ) with sintering temperature at 3MHz...41

4.1 Comparison of XRD patterns of (a) Li$_2$SiO$_3$ (b) ZnO added Li$_2$SiO$_3$ ceramics at room temperature...45

4.2 SEM micrographs of the samples with different ZnO contents (a) 0 wt %, (b) 0.1 wt %, (c) 0.3 wt %, (d) 0.5 wt %...46

4.3 Variation of relative dielectric constant (ε_r) (a) and loss tangent (tanδ) (b) with frequency at room temperature for various ZnO contents..............47

4.4 Temperature dependence of ε_r of Li$_2$SiO$_3$ ceramics with different ZnO contents 0.0, 0.1, 0.3 and 0.5 wt % at different frequencies (1 kHz, 10 kHz, 100 kHz and 1 MHz)...49-50

4.5 Comparison of variation of (a) ε_r and (b) tanδ with temperature (30 °C – 200 °C) at 100 kHz for all the samples.................................50

4.6 Temperature-frequency dependence of ac conductivity of the samples with different ZnO contents (a) 0 wt %, (b) 0.1 wt %,
4.7 Complex impedance plots, \(Z'\) vs \(Z''\) at different temperatures for
(a) 0.0 wt\% (b) 0.1 wt\% (c) 0.3 wt\% and (d) 0.5 wt\% ZnO added Li\(_2\)SiO\(_3\) ceramic with corresponding equivalent circuit [inset].................54

4.8 Variation of (a) \(R_b\), \(R_{gb}\) and (b) \(C_b\), \(C_{gb}\) with ZnO concentration at 400 °C....56

4.9 Variation of imaginary part of impedance (\(Z''\)) as a function of frequency of (a) 0.0 wt\% (b) 0.1 wt\% (c) 0.3 wt\% and (d) 0.5 wt\% ZnO added Li\(_2\)SiO\(_3\) at three different temperatures..............................56

4.10 Variation of relaxation time with \(10^3/T\) of (a) 0.0 (b) 0.1 (c) 0.3 and (d) 0.5 wt\% ZnO added Li\(_2\)SiO\(_3\) calculated from \(Z''\) with frequency and \(M''\) with frequency (inset).................................58

4.11 Variation of imaginary part of modulus (\(M''\)) with frequency of (a) 0.0 wt\% (b) 0.1 wt\% (c) 0.3 wt\% and (d) 0.5 wt\% ZnO added Li\(_2\)SiO\(_3\) at selected temperatures.................................59-60

4.12 Variation of \(M'\) with frequency of (a) 0.0 wt\% (b) 0.1 wt\% (c) 0.3 wt\% and (d) 0.5 wt\% ZnO added Li\(_2\)SiO\(_3\) at selected temperatures.................................60

4.13 Variation of normalized \(Z''\) and \(M''\) with frequency for (a) 0.0 wt\% (b) 0.1 wt\% (c) 0.3 wt\% and (d) 0.5 wt\% ZnO added Li\(_2\)SiO\(_3\) at different temperatures.......................61

4.14 Plot of \(M''/M''_{\text{max}}\) with \(\log_{10}(ff_{\text{max}})\) of (a) 0.0 wt\% (b) 0.1 wt\% (c) 0.3 wt\% and (d) 0.5 wt\% ZnO added Li\(_2\)SiO\(_3\) at different temperatures.......................63

4.15 Variation of ac conductivity of samples with frequency at different temperatures...65

4.16 Variation of \(n\) as a function of temperature for all the samples.................65

5.1 Room temperature XRD pattern of MAS glass-ceramic.........................69

5.2 SEM micrographs of fresh fractured surface of MAS glass-ceramic
with different magnifications at room temperature.................................70

5.3 Variation of dielectric constant (\(\varepsilon_r\)) and loss tangent (\(\tan\delta\)) with frequency at room temperature...71

5.4 Variation of \(\varepsilon_r\) (a) and \(\tan\delta\) (b) with temperature for MAS glass-ceramic....73

5.5 DTA curve for MAS glass-ceramic prepared by sintering route..............74
5.6 Variation of ac conductivity ($\ln \sigma_{ac}$) as a function of inverse of absolute temperature ($10^3/T$) at four different frequencies for MAS glass-ceramic.....75

5.7 (a) Nyquist plots of MAS glass-ceramic at different temperature. (b) Nyquist plots of MAS glass-ceramic with equivalent circuit (inset)......77

5.8 Variation of real part of impedance (Z') of MAS glass-ceramic as a function of frequency..78

5.9 Variation of imaginary part of impedance (Z'') of MAS glass-ceramic as a function of frequency..79

5.10 Variation of relaxation time (τ) as a function of temperature.....................80

5.11 Variation of $M'(a)$ and $M''(b)$ with frequency of MAS glass-ceramic at selected temperatures...81

6.1 XRD patterns of Li$_2$O doped MAS glass-ceramics..85

6.2 Bulk density and Apparent porosity of the MAS glass-ceramics doped with xLi$_2$O ($x = 0.0, 0.1, 0.3$ and 0.5) sintered at 1000 °C.................................86

6.3 SEM micrographs of the samples at room temperature..............................87

6.4 Variation of relative dielectric constant (ε_r) (a) and dielectric loss (tanδ) (b) with frequency at room temperature for various Li$_2$O contents..............88

6.5 Variation in (a) ε_r and (b) tanδ of Li$_2$O doped MAS glass-ceramics with temperature at 10 kHz for different x..90

6.6 DTA curve for MAS glass-ceramic prepared by sintering route...................91

6.7 (a) Nyquist plots of Li$_2$O doped MAS glass-ceramic for $x = 0.5$ with equivalent circuit (inset) (b) Nyquist plots of Li$_2$O doped MAS glass-ceramic as a function of x at 400 °C and 450 °C (inset)........... 92

6.8 Variation of imaginary part of impedance (Z'') of Li$_2$O doped MAS glass-ceramics as a function of frequency for different Li concentrations at 400 °C and 450 °C (inset)...93

6.9 Variation of relaxation time (τ) as a function of temperature....................94

6.10 Variation in Z'' and M'' with frequency at a particular temperature for different x...95

6.11 Variation of ac conductivity ($\ln \sigma_{ac}$) as a function of inverse of absolute temperature ($10^3/T$) at four different frequencies for MAS glass-ceramic.....75
temperature \(10^3/T\) at two different frequencies for all the samples........ 96-97

6.12 Variation of ac conductivity of samples with frequency at different
Temperatures.. 99

6.13 Variation of \(n\) as a function of temperature for all the samples............. 99

6.14 Variation of \(\sigma_{dc}\) with inverse of absolute temperature of all the samples
at high temperature.. 100

7.1 XRD patterns of ZnO doped MAS glass-ceramics................................. 104

7.2 Bulk density and Apparent porosity of the MAS glass-ceramics
doped with \(x\)ZnO \((x = 0.0, 0.1, 0.3\) and 0.5\) sintered at 1000 °C. 105

7.3 SEM micrographs of the samples with different ZnO contents sintered
at 1000 °C. (a) 0 wt% , (b) 0.1 wt%, (c) 0.3 wt%, (d) 0.5 wt%................. 106

7.4 Variation of relative dielectric constant (\(\varepsilon_r\)) and dielectric loss (tan\(\delta\))
with ZnO contents at room temperature... 107

7.5 Variation in (a) \(\varepsilon_r\) and (b) tan\(\delta\) of ZnO doped MAS glass-ceramics
with temperature at 10 kHz for different \(x\).. 108

7.6 Nyquist plots of ZnO doped MAS glass-ceramics at four
different temperatures... 110

7.7 Comparison of Nyquist plots of ZnO doped MAS glass-ceramics
at 400 °C.. 110

7.8 Variation of \(R_b\) and \(C_b\) (inset) with ZnO concentration at 400 °C........... 111

7.9 Variation of imaginary part of impedance (\(Z''\)) of ZnO doped
MAS glass-ceramic as a function of frequency for different ZnO
concentrations at different temperatures... 112

7.10 Variation of imaginary part of modulus (\(M''\)) with frequency of
(a) 0.0 wt% (b) 0.1 wt% (c) 0.3 wt% and (d) 0.5 wt% ZnO doped
MAS glass-ceramic at selected temperatures... 113

7.11 Variation of imaginary part of modulus (\(M''\)) with frequency for
different ZnO concentrations at 400 °C and 450 °C [inset]............................. 114

7.12 Variation in \(Z''\) and \(M''\) with frequency at a particular temperature
for different \(x\).. 115
7.13 Variation of relaxation time (τ) obtained from (a) Z'' spectra and
(b) M'' spectra of samples with temperatures for $x=0$, 0.1, 0.3 and 0.5…… 116-117
7.14 Variation of ac conductivity of samples with frequency at different
Temperatures..118-119
7.15 Variation of n as a function of temperature for all the samples............119
7.16 Variation of σ_{dc} with inverse of absolute temperature of all the samples
at high temperature..120