LIST OF FIGURES

Fig. 2.1. A generic digital watermarking system ......................... 15
Fig. 2.2. Taxonomy of an image watermarking system ................. 20
Fig. 2.3. Classification of watermarking attacks ....................... 24
Fig. 2.4. SWICO attack ........................................... 29
Fig. 2.5. TWICO attack ............................................. 30
Fig. 2.6. Examples of pixel-based imperceptibility measures ...... 34
Fig. 2.7. Example ROC graph ...................................... 37
Fig. 4.1. Approximation of square disk onto unit disk (a) An $8 \times 8$ image grid, (b) inscribed circle approximated by square grids (c) outer circle containing whole image ...................... 81
Fig. 4.2. Analysis of numerical stability with respect to maximum order $1 \leq p_{\text{max}} \leq 50$ for (a) moments and (b) transforms .......... 92
Fig. 4.3. Analysis of rotation variance properties for (a) moments and (b) transforms ............................................. 94
Fig. 4.4. Analysis of scale variance properties for (a) moments and (b) transforms .......................................................... 95
Fig. 4.5. Analysis of CPU elapse time for computation of RIMTs .... 96
Fig. 4.6. Examples of Invariant moment-based watermarking schemes.. 97
Fig. 4.7. Example of Invariant transform-based watermarking schemes.. 97
Fig. 4.8. Visual imperceptibility relative to embedding strength ($\Delta$) for (a) moments and (b) transforms ........................................ 99
Fig. 4.9. BER vs. length of watermark sequence for (a) moments and (b) transforms .......................................................... 101
Fig. 4.10. Watermark robustness to rotation for (a) moments and (b) transforms ............................................................. 103
Fig. 4.11. Watermark robustness to scaling for (a) moments and (b) transforms .............................................................. 105
Fig. 4.12. Watermark robustness to JPEG compression for (a) moments and (b) transforms .................................................. 106
Fig. 5.1. 8-way Symmetry/anti-Symmetry properties....................... 118
Fig. 5.2. Numerical stability with respect to maximum order 1 \leq p_{\text{max}} \leq 200 for accurate moments and transforms......... 123
Fig. 5.3. Rotation variance properties of accurate moments and transforms................................................................. 125
Fig. 5.4. Scale variance properties of accurate moments and transforms 125
Fig. 5.5. Analysis of time taken for computation of moments and transform........................................................................ 127
Fig. 6.1. Block diagram of the proposed embedding procedure........ 134
Fig. 6.2. Matching ratio obtained after computing ZMs with \( p_{\text{max}} = 20 \) .............................................................. 136
Fig. 6.3. Watermarked images \( f_{\text{wat}}(x, y) \) and the corresponding spatial watermark signal \( w(x, y) \) of sample image Lena with \( \Delta = 2.0 \), \( L = 256 \) and \( p_{\text{max}} = 44 \) using ZMs and RHFMs...................................................... 140
Fig. 6.4. Embedding capacity (DHR) as a function of order of moments.............................................................................. 143
Fig. 6.5. Numerical stability vs. BER with \( p_{\text{max}} \leq 150 \) ....................... 144
Fig. 6.6. Improvement in visual imperceptibility of the watermarked images of size 256\times256 pixels and \( L = 256 \) .................. 145
Fig. 6.7. Watermark robustness against rotation............................ 147
Fig. 6.8. Watermark robustness against scaling.............................. 147
Fig. 6.9. Watermark robustness against JPEG compression........... 148
Fig. 6.10. Analysis of time taken by embedding process.................. 151
Fig. 6.11. Analysis of time taken by extraction process................... 151