CONTENTS

- Preface
- Abbreviations

1. INTRODUCTION

2. REVIEW OF LITERATURE

2.1 Geminiviruses
2.2 Mungbean yellow mosaic virus (MYMV)
 2.2.1 Genome organization of MYMV
 2.2.2 MYMV replication
 2.3 Controlling MYMV: Strategies involved
 2.3.1 Genetic engineering: an efficient alternative against viruses
 2.3.2 Coat Protein Mediated Resistance (CPMR)
 2.3.3 RNA-mediated resistance (RNAi)
 2.3.3.1 Mechanism of RNAi
 2.3.3.2 RNAi and Plant Viruses
 2.3.3.3 RNAi against Viruses
 2.3.4 Viruses against RNAi: Viral Suppressor Proteins
 2.3.5 Mechanism of VSRs (Viral Suppressors)
 2.3.6 Antisense VS RNAi
 2.4 In vitro regeneration and genetic transformation of mungbean
 2.4.1 In vitro regeneration
 2.4.1.1 Somatic embryogenesis
 2.4.1.2 Direct shoot organogenesis
 2.4.1.3 Organogenesis from callus
 2.5.1 Reporter genes
 2.5.2 Selectable marker genes
 2.6 Optimization of transformation efficiency
 2.7 Genetic transformation of mungbean
 2.7.1 Agrobacterium-mediated transformation
 2.7.2 Direct DNA transfer methods
 2.7.2.1 Particle bombardment

3 MATERIALS AND METHODS

3.0 In vitro plant regeneration
 3.1 Plant material
 3.2 Seed sterilization and germination
 3.3 Preparation of explants
 3.4 Effect of preconditioning on explants
 3.5 Culture conditions and statistical analysis of data
 3.6 Effect of hormones on multiple shoot regeneration
 3.6.1 Effect of BAP and other cytokinins
 3.6.2 Effect of different auxins
 3.7 Effect of age and type of explants
3.8 Effect of genotype
3.9 Rooting of shoots
3.10 Establishment of rooted shoots (or plantlets) in soil
3.11 Optimization of selection system
3.11.1 Selection system for transformed shoots
3.11.2 Selection system for root induction
3.12 Optimization of transformation protocol
3.12.1 Bacterial strain and vector
3.12.2 Methodology
3.12.3 Enzyme (GUS) assay
3.13 Transformation of mungbean
3.13.1 Plant transformation vector(s)
3.13.2 Colony PCR
3.13.3 Agarose gel electrophoresis
3.13.4 Agrobacterium inoculation
3.13.5 Co-cultivation of explants
3.13.6 Regeneration of putative transformed plants
3.14 Molecular analysis of transgenic plants
3.14.1 Isolation of genomic DNA
3.14.2 Purification of plant DNA
3.14.3 Quantification and quantity of DNA
3.14.4 PCR analysis of putative transgenic plants
3.15 Southern hybridization of PCR positive T₀ mungbean plants
3.15.1 Restriction of plant genomic DNA
3.15.2 Gel electrophoresis
3.15.3 Transfer of DNA to the nylon membrane
3.15.4 Pre-hybridization
3.15.5 Preparation of radio labeled nptII probe
3.15.6 Radio-labeling of the probe
3.15.7 Hybridization
3.15.8 Washing
3.15.9 Autoradiography
3.15.10 Determination of DNA fragment size and copy number
3.16 RT-PCR
3.17 Analysis of T₁ progeny
3.17.1 PCR analysis of T₁ transgenic plants
3.17.2 Plant inoculation and development of disease symptoms
3.17.2.1 Agro-inoculation
4 RESULT AND DISCUSSION
4.0 Regeneration and multiple shoot formation
4.1 Choice of explants
4.1.1 Cotyledonary node
4.1.2 Primary leaf explants
4.2 Effect of preconditioning
4.3 Multiple shoot regeneration from cotyledonary node
4.3.1 Effect of different concentrations of BAP and other cytokinins
4.3.2 Effect of age of donor seedling
4.3.3 Effect of genotype
4.4 Multiple shoots regeneration from primary leaf explants
4.4.1 Effect of BAP and other cytokinins
4.4.2 Effect of interaction of BAP and Auxins
4.4.3 Effect of age of explants
4.4.4 Effect of explant type (variations of primary leaf)
4.4.5 Effect of genotype
4.5 Rooting and establishment of plant in soil
4.6 Development of selection system
4.6.1 Effect of phosphinothricin (PPT) on shoot regeneration
4.6.2 Effect of kanamycin on shoot regeneration
4.6.3 Effect of phosphinothricin on root organogenesis
4.6.4 Effect of kanamycin on root induction
4.7 Factors affecting Agrobacterium-mediated gene transfer
4.7.1 Effect of bacterial concentration
4.7.2 Effect of bacterial inoculation time
4.7.3 Effect of co-cultivation period
4.7.4 Effect of acetosyringone
4.7.5 Effect of pre-culture of explants
4.7.6 Effect of pH
4.7.7 Effect of antioxidants
4.7.8 Effect of temperature
4.7.9 Effect of mechanical injury of explants
4.8 Genetic transformation of Vigna radiata via Agrobacterium tumefaciens strain LBA4404 containing a binary vector pSP7 to check transient GUS expression
4.9 Regeneration of transgenic plants with plasmid SP7
4.9.1 Molecular analysis of putative transgenic plants regenerated using cotyledonary node
4.10 Stable genetic transformation of Vigna radiata cv. K851 using primary leaf explants and Agrobacterium tumefaciens EHA 105 (pGD3)
4.10.1 Molecular analysis of transgenics
4.10.1.1 PCR analysis for nptII and virA gene
4.10.1.2 Southern hybridization
4.10.1.3 RT-PCR
4.11 Analysis of T₁ progeny
4.11.1 PCR analysis of T₁ progeny
4.11.2 Agro-inoculation of PCR +ve T₁ plants
5. SUMMARY, CONCLUSIONS AND FUTURE PROSPECTS 80-84
REFERENCES 85-100
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic representation of characteristics and classification of Geminiviruses.</td>
</tr>
<tr>
<td>2</td>
<td>Vigna species affected by Yellow Mosaic Disease caused by MYMV.</td>
</tr>
<tr>
<td>3</td>
<td>Yellow mosaic disease of mungbean.</td>
</tr>
<tr>
<td>4</td>
<td>Strategies involved in controlling MYMV.</td>
</tr>
<tr>
<td>5</td>
<td>Some examples of Viral resistance using genetic engineering.</td>
</tr>
<tr>
<td>6</td>
<td>Mechanism of RNA interference.</td>
</tr>
<tr>
<td>7</td>
<td>Mechanism of Antisense technology.</td>
</tr>
<tr>
<td>8</td>
<td>RNAi hairpin construct against MYMV.</td>
</tr>
<tr>
<td>9</td>
<td>A 3-day old mungbean seedling showing various parts which can be used as explants for in vitro regeneration.</td>
</tr>
<tr>
<td>10</td>
<td>Restriction map of pSP7.</td>
</tr>
<tr>
<td>11</td>
<td>Restriction map of pGD3.</td>
</tr>
<tr>
<td>12a</td>
<td>Colony PCR of Agrobacterium tumefaciens clones for uidA gene (pSP7).</td>
</tr>
<tr>
<td>12b</td>
<td>Colony PCR of Agrobacterium tumefaciens clones for bar gene (pSP7).</td>
</tr>
<tr>
<td>12c</td>
<td>Colony PCR of Agrobacterium tumefaciens clones for nptII gene (pGD3).</td>
</tr>
<tr>
<td>13a</td>
<td>Sensitivity of 3-d-old cotyledonary node explants of Vigna radiata cv. K-851 to selective agent PPT.</td>
</tr>
<tr>
<td>13b</td>
<td>Sensitivity of 3-d-old cotyledonary node explants of Vigna radiata cv. K-851 to selective agent kanamycin.</td>
</tr>
<tr>
<td>14</td>
<td>Effect of selective agent kanamycin on shoots regenerated from primary leaves (escaped shoots from initial selection) at second stage of selection during subculture.</td>
</tr>
<tr>
<td>15a</td>
<td>Effect of selective agents PPT on root induction.</td>
</tr>
<tr>
<td>15b</td>
<td>Effect of selective agent kanamycin on root induction.</td>
</tr>
<tr>
<td>16</td>
<td>Effect of various parameters on the transformation efficiency of the primary leaf petiole explants co-cultured with Agrobacterium tumefaciens strain LBA4404 (pSP7).</td>
</tr>
<tr>
<td>17</td>
<td>Transient GUS expression in cotyledonary node and primary leaf explants inoculated with Agrobacterium tumefaciens strain LBA4404 harbouring a binary vector pSP7 that contained uid A (GUS) gene.</td>
</tr>
<tr>
<td>18</td>
<td>Regeneration and genetic transformation from cotyledonary node explants of Vigna radiata cv. K-851 with Agrobacterium tumefaciens strain LBA4404 harbouring a binary vector pSP7 that contained uid A (GUS), bar and rep genes.</td>
</tr>
<tr>
<td>19</td>
<td>PCR of primary transformants of Vigna radiata recovered from cotyledonary node explants transformed with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pSP7 that contained uid A (GUS), bar and rep genes.</td>
</tr>
<tr>
<td>Fig. 20</td>
<td>Regeneration and genetic transformation from primary leaf explants of Vigna radiata cv. K-851 with Agrobacterium tumefaciens strain EHA105 harboring a binary vector pGD3, that contained rep and nptII genes.</td>
</tr>
<tr>
<td>Fig. 21a</td>
<td>PCR analysis of putative transformants with primers specific to the coding region of nptII gene.</td>
</tr>
<tr>
<td>Fig. 21b</td>
<td>PCR with virA gene (to rule out the possibility of agro-contamination) of primary transformants of Vigna radiata recovered from primary leaf explants.</td>
</tr>
<tr>
<td>Fig. 22</td>
<td>Southern hybridization of genomic DNA from primary transformants of Vigna radiata recovered from primary leaf explants using nptII probe.</td>
</tr>
<tr>
<td>Fig. 23a</td>
<td>Total RNA extracted from four southern +ve T₀ plants.</td>
</tr>
<tr>
<td>Fig. 23b</td>
<td>RT-PCR of four southern +ve T₀ plants.</td>
</tr>
<tr>
<td>Fig. 24a</td>
<td>PCR with nptII gene of transformants (T₁) of Vigna radiata recovered from primary leaf explants.</td>
</tr>
<tr>
<td>Fig. 24b</td>
<td>Agro-inoculation of non-transgenic (control) and transgenic T₁ mungbean plants with partial dimer of DNA A and DNA B of MYMIV.</td>
</tr>
<tr>
<td>No.</td>
<td>Table</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>2.1</td>
<td>Use of RNAi for virus resistance in plants.</td>
</tr>
<tr>
<td>2.2</td>
<td>Genetic transformation studies in Vigna radiata L. Wilczek.</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of variable seed preconditioning on cotyledonary node explant regeneration of Vigna radiata cv. K851 with different concentrations of BAP + MSB media + 2.5 µM BAP.</td>
</tr>
<tr>
<td>4.2</td>
<td>Regeneration response of 3-d-old cotyledonary node explants of Vigna radiata L. Wilczek cv. K-851 on medium supplemented with different concentrations of 6- benzylaminopurine.</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of different cytokinins at an equimolar concentration (2.5 µM) on shoot regeneration from cotyledonary node explants of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of age of donor seedling on regeneration from cotyledonary node explants of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.5</td>
<td>In vitro regeneration of cotyledonary node explants obtained from different cultivars of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of different concentrations of BAP on in vitro regeneration from 4-d-old primary leaf explants of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of different cytokinins at an equimolar concentration (2.5 µM) of BAP on shoot regeneration from primary leaf explants of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of different auxins along with the best concentration of BAP on shoot regeneration from 4-d-old primary leaf explant of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of age of the donar seedling on regeneration from primary leaf explants of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of explant type (primary leaf variations) on in vitro shoot regeneration from Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of genotype on shoot regeneration from 4-d-old primary leaf explants of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of selective agent PPT on shoot regeneration from 3-d-old cotyledonary node explants of Vigna radiata cv. K851</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of selective agent PPT on shoot regeneration from 4-d-old primary leaf explants of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.14</td>
<td>Effect of selective agent kanamycin on shoot regeneration from 3-d-old cotyledonary node explants of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.15</td>
<td>Effect of selective agent kanamycin on shoot regeneration from 4-d-old primary leaf explants of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.16</td>
<td>Effect of selective agent PPT on root organogenesis of control shoots of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.17</td>
<td>Effect of selective agent kanamycin on root organogenesis of control shoots of Vigna radiata cv. K851.</td>
</tr>
<tr>
<td>4.18</td>
<td>Effect of different transformation parameters on transient GUS activity in Vigna radiata explants co-cultivated with Agrobacterium tumefaciens strain LBA4404 harboring binary vector pSP7.</td>
</tr>
<tr>
<td>4.19</td>
<td>Summary of transformation of cotyledonary node explants of Vigna radiata (cv. K-851) following inoculation with Agrobacterium tumefaciens strain LBA4404 containing a binary vector pSP7.</td>
</tr>
<tr>
<td>4.20</td>
<td>Summary of transformation of primary leaf explants of Vigna radiata (cv. K-851) following inoculation with Agrobacterium tumefaciens strain EHA 105 containing binary vector pGD3</td>
</tr>
</tbody>
</table>