Abbreviations and symbols used
Acknowledgements
List of Figures and Tables

Introduction

The current scenario
1. Coronary Heart Disease
 1.1. Coronary Heart Disease
1.2. The Existing Therapies
 1.2.1. The existing therapies
 1.2.2. The thrombolytic molecule
3.2. Staphylokinase (SAK)
 3.2.1. Structure and properties of staphylokinase
 3.2.2. Mechanism of action
 3.2.3. Advantages of staphylokinase
 3.2.4. Natural production of staphylokinase
 3.2.5. Recombinant staphylokinase
 3.2.6. Secretory production of staphylokinase
3.3. Large scale production of heterologous proteins in Escherichia coli
 3.3.1. Modes of Fermentation
 3.3.2. Fed-batch fermentation
 3.3.3. Feeding strategies in fed-batch fermentation
 3.3.4. Factors affecting fed-batch fermentation
 3.3.4.1. Effect of heterologous protein production on host physiology
 3.3.4.2. Plasmid stability
 3.3.4.3. Degradation of recombinant proteins by proteases
 3.3.4.4. Production of inhibitory by-product acetate
 3.3.4.5. Pre-induction and post-induction specific growth rate
 3.3.4.6. Effect of dissolved oxygen (DO) concentration
 3.3.5. The fermentation medium
 3.3.6. Advantages of chemically defined / semi-defined media
 3.3.7. Fermentation with chemically defined medium
 3.3.8. Enhanced process consistency
 3.3.9. Better control and monitoring
 3.3.10. Improved process scale-up

Objectives

Review of Literature

The haemostatic system
3.1. Thrombolysis
3.2. Staphylokinase (SAK) – The thrombolytic molecule
 3.2.1. Structure and properties of staphylokinase
 3.2.2. Mechanism of action
 3.2.3. Advantages of staphylokinase
 3.2.4. Natural production of staphylokinase
 3.2.5. Recombinant staphylokinase
 3.2.6. Secretory production of staphylokinase
3.3. Large scale production of heterologous proteins in Escherichia coli
 3.3.1. Modes of Fermentation
 3.3.2. Fed-batch fermentation
 3.3.3. Feeding strategies in fed-batch fermentation
 3.3.4. Factors affecting fed-batch fermentation
 3.3.4.1. Effect of heterologous protein production on host physiology
 3.3.4.2. Plasmid stability
 3.3.4.3. Degradation of recombinant proteins by proteases
 3.3.4.4. Production of inhibitory by-product acetate
 3.3.4.5. Pre-induction and post-induction specific growth rate
 3.3.4.6. Effect of dissolved oxygen (DO) concentration
 3.3.5. The fermentation medium
 3.3.6. Advantages of chemically defined / semi-defined media
 3.3.7. Fermentation with chemically defined medium
 3.3.8. Enhanced process consistency
 3.3.9. Better control and monitoring
 3.3.10. Improved process scale-up
3.5. Development of chemically defined / semi-defined medium ... 26
3.6. Optimization of fermentation medium .. 27
3.6.1. Classical method of medium optimization .. 27
3.6.2. Statistical method of medium optimization .. 28
3.7. Economics of using chemically defined media in fermentations .. 29
3.8. Haemoglobin – The oxygen carrier ... 29
3.8.1. Regulation of VHb expression .. 30
3.8.2. Biochemical function of VHb .. 31
3.8.3. Use of VHb to improve cell growth and productivity .. 31
3.9. Downstream Processing – Cell lysis and Protein purification ... 32
3.9.1. Methods of cell disruption and its quantification .. 33
3.9.2. Classification of cell disruption processes .. 34
3.9.2.1. Physical disruption methods .. 35
3.9.2.1.1. Decompression ... 35
3.9.2.1.2. Osmotic shock .. 36
3.9.2.1.3. Thermal lysis .. 36
3.9.2.2. Chemical disruption methods ... 37
3.9.2.2.1. Antibiotics ... 37
3.9.2.2.2. Chelating agents ... 38
3.9.2.2.3. Chaotropic agents .. 38
3.9.2.2.4. Detergents ... 38
3.10. Large scale cell disruption: The Bead Mill ... 39
3.10.1. Important operational parameters of bead-milling .. 41
3.10.2. Agitator speed .. 41
3.10.3. Effect of feed rate on microorganism disintegration ... 41
3.10.4. Size of the beads .. 42
3.10.5. Bead loading .. 42
3.10.6. Specific weight of the grinding elements ... 42
3.10.7. Concentration of cell suspension .. 43
3.10.8. Temperature .. 43
Purification of recombinant proteins ... 43
3.11. Ion – exchange chromatography ... 44
3.11.1. Mechanism of ion – exchange chromatography .. 44
3.11.2. Factors affecting ion – exchange chromatography .. 45
3.11.2.1. The stationary phase ... 45
3.11.2.2. The mobile phase .. 46
3.11.2.3. Effect of pH and ionic concentration ... 47
3.11.2.4. Effect of binding capacity of exchanger ... 47
3.12. Hydrophobic interaction chromatography ... 47
3.12.1. Mechanism of hydrophobic interaction chromatography ... 48
3.12.2. Factors affecting hydrophobic interaction chromatography ... 49
 3.12.2.1. The stationary phase .. 49
 3.12.2.2. The mobile phase ... 50
 3.12.2.3. Effect of pH on hydrophobic interaction chromatography (HIC) ... 50
 3.12.2.4. Effect of temperature on hydrophobic interaction chromatography .. 51
 3.12.2.5. Effect of Additives on hydrophobic interaction chromatography ... 51
3.13. Expanded Bed Chromatography .. 51
 3.13.1. Adsorption on expanded bed .. 54
 3.13.2. Principle of expanded bed chromatography .. 54
 3.13.3. Operation ... 55
 3.13.4. The Column ... 56
 3.13.5. The matrix ... 56
 3.13.6. Advantages and applications of expanded bed chromatography ... 57
3.14. Derivatization of proteins with polyethylene glycol .. 58
 3.14.1. PEG-ylation reaction .. 59

Materials and Methods

Strain Details .. 60

4.1. Brief Description of the Fermenter used .. 60
 4.1.1. BIOFLO 3000 fermenter: ... 60
 4.1.2. APPLIKON fermenter: .. 61
 4.1.3. New Brunswick Scientific & Applikon (Common Features) ... 61
4.2. Reagents and Medium Components .. 62
 4.2.1. Luria Bertani medium ... 62
 4.2.2. Synthetic medium ... 63
 4.2.3. Trace Metal Stock Solution ... 63
 4.2.4. Semi-Synthetic medium ... 64
3.3. Reagents for Biochemical Quantification .. 64
 3.3.1. DNS Reagent for Quantification of Reducing Sugar .. 64
4.3. Estimation of Protein Content .. 65
 4.3.2. Bradford Reagent .. 65
 4.3.2.2. BCA Protein Estimation Reagent ... 65
4.3. SDS-PAGE of whole cell lysate .. 65
 4.3.2. Staining Solution .. 66
 4.3.3. De-staining Solution ... 66
 4.3.4. Gel Loading Dye (2X) ... 67
 4.3.5. Silver Staining of SDS-PAGE Gels .. 67
4.4. Reagent for Estimation of Staphylokinase Activity .. 67
4.5. Inoculum Development ... 68
4.6. Analytical procedures ... 68
 4.6.1. Measurement of cell density spectro-photometrically .. 68
4.6.2. Correlation of dry cell weight and cell density ... 68
4.6.3. Estimation of specific growth rate ... 68
4.6.4. Test for presence of kanamycin in the fermentation broth ... 69
4.6.5. Estimation of plasmid segregation stability ... 69
4.6.6. Estimation of total reducing sugar .. 70
4.6.7. BCA protein estimation method ... 70
4.6.8. Bradford protein estimation method .. 71
4.6.9. Estimation of staphylokinase expression by densitometry ... 71
4.6.10. Estimation of staphylokinase activity .. 71
4.6.11. Western Blotting for detection of VHb expression ... 72
4.6.12. Determination of Isoelectric point of staphylokinase .. 73
4.6.13. MALDI / CD analysis of staphylokinase ... 73
4.7. Fermentation studies with LB medium .. 74
4.7.1. Preparation of glycerol stocks using LB medium .. 74
4.7.2. Preparation of pre-inoculum / inoculum using LB medium .. 74
4.7.3. Cell growth and SAK expression with / without addition of IPTG 74
4.7.4. Effect of kanamycin concentration cell growth .. 75
4.7.5. Effect of inoculum age and concentration on cell growth ... 75
4.7.6. Effect of induction time on cell growth and SAK production ... 75
4.7.7. Effect of inducer concentration on cell growth and SAK production 75
4.7.8. Batch fermentation studies in LB medium .. 76
4.7.9. Fed-batch fermentation studies in LB medium ... 76
4.8. Fermentation studies in synthetic medium ... 76
4.8.1. Preparation of inoculum ... 76
4.8.2. Shake flask studies with synthetic medium ... 77
4.8.3. Batch fermentation studies with synthetic medium .. 77
4.8.4. Fed-batch fermentation studies with synthetic medium .. 78
4.9. Fermentation studies with semi-synthetic medium .. 78
4.9.1. Preparation of inoculum ... 78
4.9.2. Effect of carbon source on cell growth and SAK expression 78
4.9.3. Effect of nitrogen source on cell growth and SAK expression 79
4.9.4. Studies on semi-synthetic medium by Response Surface Methodology 79
4.9.5. Batch fermentation studies with semi-synthetic medium ... 81
4.9.5.1. Running of fermenter with semi synthetic medium .. 81
4.9.5.2. Effect of DO concentration on cell growth and SAK production 81
4.9.5.2.1. Shake flask studies with co-expression of VHb along with SAK 82
4.9.5.2.2. Fermenter studies with co-expression of VHb along with SAK 82
4.9.6. Fed-batch fermentation studies with semi synthetic medium 83
4.9.6.1. Effect of glucose feeding rate on cell growth and SAK expression 83
4.9.6.2. Effect of change of feed C/N ratio on cell growth and SAK production 83
4.9.6.3. Effect of IPTG concentration on cell growth and SAK expression .. 84
4.9.6.4. Effect of type of feeding on cell growth and SAK production .. 84
4.9.6.5. Effect of change in pH controlling agent on cell growth and SAK production 85
4.10. Cell Lysis .. 86
4.10.1. Lysis using sonication .. 86
4.10.2. Lysis using chemical methods .. 86
4.10.2.1. Effect of incubation time on cell lysis .. 86
4.10.2.2. Effect of Bugbuster volume on cell lysis .. 87
4.10.3. Lysis using bead-mill .. 87
4.10.3.1. Effect of bead milling time on cell lysis .. 87
4.10.3.2. Effect of bead diameter on cell lysis .. 88
4.10.3.3. Effect of bead loading on cell lysis .. 88
4.10.3.4. Effect of cell loading on cell lysis ... 88
4.10.3.5. Effect of agitation speed on cell lysis .. 88
4.10.3.6. Effect of feeding rate on cell lysis .. 88
4.10.3.7. Cell lysis by continuous milling process by RSM .. 89
4.11. Purification of Staphylokinase .. 89
4.11.1. Determination of isoelectric point of Staphylokinase ... 89
4.11.2. Screening of anion exchange chromatography matrix ... 89
4.11.3. Screening of cation exchange chromatography matrix ... 90
4.11.4. Screening of hydrophobic interaction chromatography matrix ... 90
4.11.5. Purification of staphylokinase by two-step chromatography ... 90
4.11.6. Effect of change of pH of elution buffer ... 91
4.11.7. Purification of staphylokinase using expanded bed chromatography .. 91
4.11.7.1. Expanded bed chromatography as the initial capture step .. 91
4.11.7.2. Effect of sample recirculation on binding of staphylokinase ... 92
4.11.7.3. Effect of protein loading on expanded bed chromatography .. 92
4.11.7.4. Effect of loading buffer concentration on expanded bed chromatography 92
4.11.7.5. Effect of flow rate of elution on expanded bed chromatography .. 92
4.12. Enzymology studies ... 93
4.12.1. Selection of reaction buffer for staphylokinase activity .. 93
4.12.2. Effect of temperature on the stability of staphylokinase .. 93
4.12.3. Effect of pH on the stability of staphylokinase ... 93
4.12.4. Effect of temperature, pH and buffer concentration on the SAK activity .. 93
4.13. PEGylation of Staphylokinase .. 94

Results and Discussion

5.1. Luria Bertani medium: Shake flask studies ... 96
5.1.1. Effect of kanamycin concentration on cell growth ... 96
5.1.2. Effect of inoculum age and concentration on cell growth ... 97
5.1.3. Effect of induction time on growth and SAK expression ... 97
5.1.4. Effect of IPTG concentration on cell growth and SAK expression.. 98
5.2. Luria Bertani Medium: Batch Fermenter Studies.. 98
5.3. Luria Bertani Medium: Fed-Batch Fermenter Studies .. 99
5.4. Synthetic Medium: Shake Flask Studies ... 100
5.5. Synthetic Medium: Batch fermenter Studies .. 101
5.6. Fed-batch Fermenter Studies using Synthetic Medium... 101
5.7. Semi Synthetic Medium: Shake Flask Studies .. 102
5.7.1. Effect of carbon sources on cell growth and SAK expression ... 102
5.7.2. Effect of nitrogen sources on cell growth and SAK expression .. 103
5.7.3. Statistical optimization of fermentation medium: Shake flask studies .. 105
5.7.3.1. RSM with tryptone as organic nitrogen source .. 108
5.7.3.2. RSM with peptone as organic nitrogen source ... 114
5.7.3.3. RSM with yeast extract as organic nitrogen source .. 120
5.7.3.4. RSM with Combination of yeast extract, peptone and tryptone ... 126
5.8. Semi synthetic medium: Batch fermenter studies .. 129
5.8.1. Effect of DO concentration on cell growth and SAK production .. 129
5.8.1.1. Shake flask studies with and without co-expression of VHB .. 130
5.8.1.2. Batch fermenter studies with and without co-expression of VHB ... 130
5.9. Fed-batch Fermenter Studies using Semi Synthetic Medium ... 131
5.9.1. Effect of change of feed carbon (glucose) to nitrogen (organic nitrogen source) (C/N ratio) on cell growth and SAK production .. 133
5.9.2. Effect of IPTG concentration on cell growth and SAK expression .. 134
5.9.3. Effect of single and two stage induction on cell growth and SAK expression 135
5.9.4. Effect of increase in nutrient feeding rate on cell growth and SAK expression 135
5.9.5. Liquid ammonia as pH controlling agent in fed batch fermentation .. 137
5.9.5.1.a. Constant feeding of nutrient with aqueous ammonia as pH controlling agent 137
5.9.5.1.b. Step feeding of nutrients with aqueous ammonia as pH controlling agent 137
Downstream Processing – Recovery and Protein purification .. 138
5.10. Cell Lysis by Ultrasonication ... 139
5.11. Cell Lysys by Chemical Method .. 140
5.11.2. Effect of Cell Lysis Reagent Volume on Cell Lysis .. 140
5.12. Cell Lysis by Bead-Milling Process .. 141
5.12.1. Effect of Bead-Milling Time on Intracellular Protein Release ... 141
5.12.2. Effect of Bead Size on Intracellular Protein Release ... 141
5.12.3. Effect of Bead Loading on Intracellular Protein Release .. 142
5.12.4. Effect of Cell Loading on Intracellular Protein Release .. 142
5.12.5. Effect of Agitation Speed on Intracellular Protein Release ... 143
5.12.6. Effect of rate of cell slurry feeding on intracellular protein release .. 143
5.13. Cell lysis by continuous bead-milling process .. 143