CHAPTER - 1

Introduction

1.1 Source of Uranium

1.1.1 Seawater: an Inexhaustible Source of Uranium

1.2 Uranium: Source of Primary Energy

1.3 Sorption Preconcentration of Microcomponents for Chemical Analysis

1.4 Solid Phase Extractive (SPE) Preconcentration of U(VI)

1.4.1 Introduction

1.4.2 Development of New Chelating Sorbents for Uranium Recovery from Multi-component Feed

1.4.3 Ion-exchange Sorbents with Phosphonate Functional Group

1.4.3.1 Introduction

1.4.3.2 Poly(ethylene glycol methacrylate phosphate) (PEGMP) – a new promising sorbent for uranium recovery

1.5 Preparation of Sorbents: Polymer Grafting and Crosslinking

1.5.1 High - Energy Radiation

1.5.1.1 Preirradiation techniques

1.5.1.2 Peroxidation techniques

1.5.1.3 Simultaneous method

1.5.2 Photoradiation

1.6 Classification of Grafted and/or Crosslinked Polymer

1.6.1 Ion Exchangers

1.6.1.1 Ion exchange membranes

1.6.1.2 Ion exchange resins

1.6.2 Chelating Polymers

1.6.3 Hydrogels
1.6.4 Affinity Polymers

1.7 Membranes
1.7.1 Introduction
1.7.2 Synthetic Membranes
1.7.3 Membrane Based Separation Processes

1.8 Radiotracers in Gel / Membrane Characterization
1.8.1 Choice of a Radiotracer
1.8.2 Production of Radiotracers

1.9 Scope of the Thesis

References

CHAPTER – 2

Experimental

2.1 Syntheses of Gels/Membranes
2.1.1 Reagents
2.2 Apparatus
2.2.1 UV Multi-lamp photoreactor
2.2.2 Electron beam accelerator

2.3 Synthesis of Gels and Nano-composite
2.3.1 Synthesis of Polyamidoxime (PAO) gels
2.3.2 Synthesis of Two Component Polyamidoxime (PAO) Gels
2.3.3 Synthesis of Poly (ethylene glycol methacrylate phosphate) (PEGMP) Gels
2.3.4 Synthesis of Ag@PEGMP Nano-composites

2.4 Synthesis of Membranes
2.4.1 By UV Radiation
2.4.2 By Electron Beam

2.5 Chemical and Physical Characterizations of Sorbents (Gel and Membrane)
2.5.1 IR Spectroscopy
2.5.2 Scanning Electron Microscopy (SEM) 51
2.5.3 Elemental Analysis 51
2.5.4 Degree of Grafting 52
2.5.5 Water Uptake Capacity 52
2.5.6 Quantification of Ag Nanoparticles in Nano-composite Film 52

2.6 Metal Sorption Properties 53
2.6.1 U(VI) Uptake Efficiency in PAO/PEGMP-membrane 53
2.6.2 U(VI) Uptake Capacity of Membrane 54
2.6.3 Na\(^+\)-exchange Capacity of PAO-membrane 54
2.6.4 Self-diffusion Coefficient 55
2.6.5 Sorption Kinetics of U(VI) 56
2.6.6 Kinetics of U(VI) Species Exchange 57
2.6.7 Studies on Multi-ions Sorption and Desorption 57

2.7 Analytical Applications of Membrane 58
2.7.1 Preconcentration of Uranium(VI) from Waste Stream 58
2.7.2 Preconcentration of Uranium from Leach Liquors 58

2.8 Radiotracers in Gel / Membrane characterization 59
2.8.1 Uranium-233 59
2.8.2 Iron-59 60
2.8.3 Other Radiotracers 60
2.8.4 Safety Considerations 61

2.9 Analytical Instruments / Techniques 61
2.9.1 Measurement of Radiations 61
 2.9.1.1 Liquid scintillation counting (LSC) 62
 2.9.1.2 NaI(Tl) detector system 64
 2.9.1.3 High purity germanium detector 66
2.9.2 Other Analytical Techniques 67
 2.9.2.1 Spectrophotometer 67
 2.9.2.2 pH meter 68
 2.9.2.3 Constant temperature water bath 68
 2.9.2.4 Inductively coupled plasma – atomic emission spectrometer (ICP-AES) 68
2.9.2.5 Energy dispersive X-ray fluorescence spectrometer

2.9.2.6 Micrometer screw gauge

2.10 Estimation of Uranium

2.10.1 Spectrophotometry

2.10.2 Atomic Emission Spectrometry

2.10.3 Neutron Activation Analysis (NAA)

2.3.10.1 Principle of neutron activation analysis

References

CHAPTER – 3

Studies of the Parameters Influencing Uranium Recovery from Seawater by Poly(amidoxime) Sorbents

3.1 Background

3.2 Objectives

3.3 Results and Discussions

3.3.1 Properties of AO Sorbents

3.3.2 Kinetics of Uranium(VI) Uptake

3.3.3 Uranium(VI) Loading Capacity of AO-membrane

3.3.4 Self-diffusion of Ions in Sorbent Matrix

3.3.5 Kinetics of U(VI) Species Exchanges

3.3.6 Desorption of Uranium(VI) from AO-membrane

3.4 Conclusions

References

CHAPTER – 4

Studies on Hydrogels: Search for better Chemical Composition of Sorbent for Uranium Recovery from Seawater

References
SECTION - 4A

Scanning of Chemical Composition of Hydrogel

4A.1 Background

4A.2 Preparation of Hydrogels

4A.3 Chemical and Physical Characterizations
 4A.3.1 FTIR spectra
 4A.3.2 Elemental Analysis
 4A.3.3 Scanning Electron Microscopy (SEM)

4A.4 Determination of pKa Values of Co-monomers

4A.5 Sorption and Desorption of U(VI) in Hydrogels

4A.6 Comparison of U(VI) Sorption Capacity of Hydrogels

4A.7 Effects of Chemical Composition of Hydrogel on Sorption Kinetics

4A.8 Mechanistic Study of U(VI) Sorption

4A.9 Selectivity of Hydrogels

4A.10 Conclusions

References

SECTION - 4B

Bio-resistant Sorbent for Preconcentration of Uranium from Complex Aqueous Streams

4B.1 Background

4B.2 Synthesis of Nano-composite Sorbent

4B.2 Results and Discussion
 4B.2.1 Synthesis of Sorbent Film
 4B.2.2 Characterization of Ag@PEGMP
 4B.2.3 Antibacterial Study
 4B.2.4 Sorption of U(VI) in Nano-composite under Seawater Conditions

4B.3 Conclusions

References
CHAPTER – 5

Fibrous Polymer Membrane with Optimized Chemical Composition: Uranium Recovery from Seawater and Other Lean Aqueous Streams

5.1 Background 136
5.2 Preparation and Characterization of Membranes 138
5.3 U(VI) Uptake in Membrane 140
5.4 Comparison of PEGMP and PAO membranes 142
 5.4.1 Sorption Kinetics 142
 5.4.2 Study on Multi-ions Sorption and Desorption 146
5.5 Ion Competition in Sorption-Desorption 147
5.6 Quantitative Analyses of Uranium using PEGMP Membrane 152
 5.6.1 Preconcentration of Uranium from Leach Liquors 152
 5.6.2 Preconcentration of Uranium from Waste Stream 154
5.7 Conclusions 156

References 158

Summary 161-164

List of Publications 165-168