Table of Contents

Chapter-1: Introduction 1-44

1.1 **CONDUCTING POLYMERS**
 1.1.1 Intrinsically/Inherently Conducting Polymers 2
 1.1.2 Conducting Polymer Composites 5
 1.1.3 Ionically Conducting Polymers 6

1.2 **POLYANILINE** 6
 1.2.1 Synthesis of Polyaniline 8
 (a) Chemical Synthesis 8
 (b) Electrochemical Synthesis 9
 1.2.2 Doping in Polyaniline 9
 1.2.3 Conduction in Polyaniline 12
 1.2.4 Limitations of Polyaniline 13

1.3 **POLYMER BLENDS** 14

1.4 **ELECTRICAL CONDUCTION IN POLYMER BLENDS** 16
 1.4.1 For Both Host and Filler Polymers Non-Conducting 16
 1.4.2 For Conducting Polymer Dispersed in Insulating Polymer Matrix 16

1.5 **POLYMER BLENDS AS DIELECTRICS** 21
 1.5.1 Polarization in Polymer Blends 22
 1.5.2 Dielectric Constant and Dielectric Loss 25

1.6 **OUTLINES OF THE PRESENT WORK** 26

REFERENCES 29
Chapter-2: Synthesis, Characterization and Measurement Techniques

2.1 POLY(METHYL METHACRYLATE)

2.2 SYNTHESIS OF POLYANILINE
 - 2.2.1 Polyaniline Doped with DBSA (PAni.DBSA)
 - 2.2.2 Polyaniline Doped with CSA (PAni.CSA)
 - 2.2.3 Polyaniline Doped with Fe Salt (PAni.Fe)
 - 2.2.4 Polyaniline Doped with Cu Salt (PAni.Cu)

2.3 PREPARATION OF PMMA-PANI BLENDS

2.4 UV-VISIBLE SPECTROSCOPY
 - 2.4.1 Theory and Instrumentation
 - 2.4.2 Determination of Optical Energy Gap (E_{opt})

2.5 FOURIER TRANSFORM INFRARED (FTIR) SPECTROSCOPY

2.6 RAMAN SPECTROSCOPY

2.7 ELECTRICAL MEASUREMENTS
 - 2.7.1 DC Conductivity
 - 2.7.2 Dielectric Studies

REFERENCES

Chapter-3: PMMA-PAni (acid doped) Blends

3.1 ACIDS (DBSA AND CSA) DOPED POLYANILINE
 - 3.1.1 UV-Visible Absorption Studies
 - 3.1.2 FTIR Spectroscopy
 - 3.1.3 Raman Spectroscopy
3.1.4 Conductivity Measurements 76

3.2 PMMA-PANI.DBSA BLENDS 77
 3.2.1 UV-Visible-NIR Absorption Studies 78
 Determination of Optical Energy Gap 79
 3.2.2 FTIR Spectroscopic Studies 81
 3.2.3 Raman Spectroscopic Studies 83
 3.2.4 V-I Measurements 85
 (a) DC Conductivity 86
 (b) Charge Conduction Mechanism 87
 3.2.5 Dielectric Measurements 90
 (a) Dielectric Constant and Dielectric Loss 90
 (b) AC Conductivity 94

3.3 PMMA-PANI.CSA BLENDS 95
 3.3.1 UV-Visible-NIR Absorption Studies 95
 Determination of Optical Energy Gap 96
 3.3.2 FTIR Spectroscopic Studies 98
 3.3.3 Raman Spectroscopic Studies 99
 3.3.4 V-I Measurements 101
 (a) DC Conductivity 101
 (b) Charge Conduction Mechanism 102
 3.3.5 Dielectric Measurements 104
 (a) Dielectric Constant and Dielectric Loss 104
 (b) AC Conductivity 106

3.4 A RELATIVE COMPARISON 107

CONCLUSION 110

REFERENCES 111
Chapter-4: PMMA-PAni (metal salt doped) Blends

4.1 METAL SALTS (Fe and Cu) DOPED PANI

4.1.1 UV-Visible-NIR Absorption Studies 118
4.1.2 FTIR Spectroscopy 119
4.1.3 Raman Spectroscopy 120
4.1.4 Conductivity Measurements 122

4.2 PMMA-PAni.Fe BLENDS

4.2.1 UV-Visible-NIR Absorption Studies 124
 Determination of Optical Energy Gap 125
4.2.2 FTIR Spectroscopic Studies 127
4.2.3 Raman Spectroscopic Studies 128
4.2.4 V-I Measurements 130
 (a) DC Conductivity 132
 (b) Charge Conduction Mechanism 133
4.2.5 Dielectric Measurements 135
 (a) Dielectric Constant and Dielectric Loss 135
 (b) AC Conductivity 139

4.3 PMMA-PAni.Cu BLENDS

4.3.1 UV-Visible-NIR Absorption Studies 140
 Determination of Optical Energy Gap 141
4.3.2 FTIR Spectroscopic Studies 143
4.3.3 Raman Spectroscopic Studies 144
4.3.4 V-I Measurements 146
 (a) DC Conductivity 147
 (b) Charge Conduction Mechanism 148
4.3.5 Dielectric Measurements 150
 (a) Dielectric Constant and Dielectric Loss 150
 (b) AC Conductivity 153

4.4 A RELATIVE COMPARISON 154
Table of Contents

CONCLUSION 156
REFERENCES 157

Chapter-5: Summary 163-173

5.1 MOTIVATION 163

5.2 BROAD OBJECTIVES OF THE PRESENT STUDY 165

5.3 METHODOLOGY 165

5.4 MAJOR OUTCOMES 166

5.4 FUTURE SCOPE OF THE WORK 168
REFERENCES 169

List of Publications 174-175