Chapter 1
Introduction

1.1. Macroscopic magnetic phenomena
 1.1.1. Magnetic moment 2
 1.1.2. Magnetization 4
 1.1.3. The Curie-Weiss law 4
1.2. Nanoscale magnetic materials and its characteristic property 5
1.3. Magnetic fluid (ferrofluid)
 1.3.1. Stability of ferrofluid 15
 1.3.2. Magnetic properties of ferrofluids 19
1.4. An overview of ferrofluid synthesis and application 21
1.5. Objective of the thesis 23
References 24

Chapter 2
Synthesis protocol and characterization features of ferrofluids

2.1. Ferrofluids based on different kinds of MNPs, surfactant and carrier fluids
 2.1.1. Synthesis of magnetite (Fe₃O₄) based
ferrofluids (with different carrier fluid) 34

2.1.2. Synthesis of magnetite- based FF with methanol as carrier (for varying surfactants) 37

2.1.3. Synthesis of gadolinium oxide (Gd$_2$O$_3$) based ferrofluids 39

2.2. Characterization tools 42

2.2.1. X-Ray Diffraction (XRD) 42

2.2.2. Electron microscopy 47

2.2.3. Dynamic light scattering (DLS) 50

2.2.4. Fourier Transform Infra-Red spectroscopy 53

2.2.5. Raman spectroscopy 59

2.2.6. Electron paramagnetic resonance spectroscopy 62

2.2.7. Photoluminescence spectroscopy 65

2.3. Concluding remarks 66

References 67

Chapter 3
Effect of static magnetic field on ferrofluids

3.1. Effect of static magnetic field on ferrofluids 70

3.2. Magneto-optic effects of ferrofluid 71

3.2.1. Faraday rotation of synthesized ferrofluids 72

3.2.2. Linear dichroism of synthesized ferrofluids 78

3.3. Magneto-rheological property of ferrofluid 83

3.4. Concluding remarks 89

References 90

Chapter 4
Low energy ion irradiated nanoparticle based ferrofluids: spectroscopic and magneto-optic characteristics

4.1. Ion irradiation 96
4.2. Effect of 80-keV Ar ions on synthesized nanoparticles/FFs

4.2.1. X-ray diffraction

4.2.2. Transmission electron microscopy

4.2.3. FT-IR spectroscopy

4.2.4. EPR spectroscopy

4.2.5. Raman spectroscopy

4.4. Concluding remarks

References

Chapter 5

\(\gamma\)-irradiation effects on ferrofluids

5.1. Gamma (\(\gamma\)) irradiation

5.2. \(\gamma\)-irradiation on ferrofluid (FFW, FFK and FFG) systems

5.2.1. Transmission electron microscopy

5.2.2. Dynamic light scattering

5.2.3. FT-IR spectroscopy

5.3. Photoluminescence study

5.4. Magneto-optic response of gamma-irradiated ferrofluids

5.5. Concluding remarks

References

Chapter 6

Comparative analysis of magneto-optic characteristics of synthesized ferrofluids

6.1. Comparison of magneto-optic responses

6.1.1. Faraday rotation of Fe\(_3\)O\(_4\) based ferrofluids

6.1.2. Linear dichroism of Fe\(_3\)O\(_4\) based ferrofluids

6.1.3. Irradiation effect on Faraday rotation of FFW
6.2. Concluding remarks 163
References 164

Chapter 7
Analytical calculation of chain length in ferrofluids

7.1. Structure transition in ferrofluid 167
7.2. Dimensional analysis 170
 7.2.1. Methods of dimensional analysis 170
 7.2.2. Error analysis
7.3. Analytical calculation of chain length in ferrofluid 173
7.4. Concluding remarks 181
Rereferences 181

Chapter 8
Conclusions and future directions 184

Appendix 189
Publications 193

ADDENDA