FIGURE CAPTIONS

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Caption</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Commonly used metallic implants and metallic biomaterials [37].</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Factors and their effects on biocompatibility [33].</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Schematic view of the oxide layer on pure titanium [56].</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Schematic of a thermal spray process [172].</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Principal morphologies of lamellae obtained from sprayed particles: (a) pancake; (b) flower. Number (1) corona; (2) crack; (3) deformed substrate [174].</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Cross-section of a thermally sprayed coating with all microstructural defects: (1) substrate; (2) weak contact to the substrate; (3) crack resulting from one-torch-pass stresses; (4) crack resulting from relaxation of vertical stresses; (5) lamellae solidified with columnar crystals; (6) crack resulting from relaxation of in-plane stresses; (7) large pore (a few micrometres in size); (8) well-deformed lamellae; (9) powder particle that remained solid on spraying; (10) small pore (submicrometre size) [173].</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Typical flame temperature and particle velocity operation ranges for various thermal spray systems [180].</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>A schematic of the plasma spraying equipment [172].</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>A schematic of the cross-section of the HVOF spray system [214].</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>A schematic of the detonation spraying Gun [175].</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>A schematic of the cold spraying equipment [173].</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Cross-section of a powder flame spray [228].</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>The schematic diagram of hexagonal structure of HA crystal [248].</td>
<td>40</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Part of the phase diagram of CaO-P₂O₅ under a water pressure of 500</td>
<td>43</td>
</tr>
</tbody>
</table>
mm Hg [173].

Figure 2.12 Temperature field inside an HA powder particle at flight in plasma jet and their possible crystal phase transformations on particle heating [261].

Figure 2.13 Schematic representation of the rutile crystal structure of TiO$_2$. The dark and light spheres correspond to Ti and O atoms, respectively ($a=4.594\text{Å}$, $c=2.958\text{Å}^\circ$) [277].

Figure 5.1 XRD profile of 316L SS.

Figure 5.2 XRD profile of Ti-6-4 alloy substrate [α-Ti phase (α), β- Ti phase (β)].

Figure 5.3 XRD profile of HA-A (10 µm) and HA-B (30 µm) powders.

Figure 5.4 XRD pattern of TiO$_2$ powder.

Figure 5.5 XRD pattern of HA-TiO$_2$ composite powder, [HA (H) and TiO$_2$ rutile (T)].

Figure 5.6 SEM morphology (a) and particle size distribution (b) of HA-A (10 µm) powder.

Figure 5.7 SEM morphology (a) and particle size distribution (b) of HA-B (30 µm) powder.

Figure 5.8 SEM morphology of (a) TiO$_2$ powder and (b) HA-TiO$_2$ composite powder.

Figure 5.9 XRD analysis of HA-A coating on 316L SS.

Figure 5.10 XRD analysis of HA-A coating on Ti-6-4 alloy.

Figure 5.11 XRD pattern of flame-sprayed HA-B coating on 316L SS [β-TCP (β), TTCP (T$'$), and HA (unmarked peaks)].

Figure 5.12 XRD pattern of flame-sprayed HA-B coating on Ti-6-4 alloy [β-TCP (β), TTCP (T$'$) and HA (unmarked peaks)].

Figure 5.13 XRD pattern of HA-TiO$_2$ composite coating on 316L SS [TTCP (T$'$), TiO$_2$ rutile (T), HA (H), and α-TCP (α)].

Figure 5.14 XRD pattern of HA-TiO$_2$ composite coating on Ti-6-4 alloy [HA (H), TiO$_2$ rutile (T) and β-TCP (β)].
Figure 5.15 XRD pattern of flame-sprayed HA/TiO$_2$ bond coating on 316L SS [β-TCP (β), TTCP (T'), and HA (unmarked peaks)].

Figure 5.16 XRD pattern of flame-sprayed HA/TiO$_2$ bond coating on Ti-6-4 alloy [β-TCP (β), TTCP (T'), and HA (unmarked peaks)].

Figure 5.17 FE-SEM analysis along with EDS point analysis showing elemental composition of flame-sprayed HA-A coating on 316L SS.

Figure 5.18 FE-SEM analysis along with EDS point analysis showing elemental composition of flame-sprayed HA-A coating on Ti-6-4 alloy.

Figure 5.19 FE-SEM analysis along with EDS point analysis showing the elemental composition of flame-sprayed HA-B coating on 316L SS.

Figure 5.20 FE-SEM analysis along with EDS point analysis showing elemental composition of flame-sprayed HA-B coating on Ti-6-4 alloy.

Figure 5.21 FE-SEM analysis along with EDS point analysis showing the elemental composition of flame-sprayed HA-TiO$_2$ composite coating on 316L SS.

Figure 5.22 FE-SEM analysis along with EDS point analysis showing elemental composition of flame-sprayed HA-TiO$_2$ composite coating on Ti-6-4 alloy.

Figure 5.23 FE-SEM analysis along with EDS point analysis showing the elemental composition of flame-sprayed HA/TiO$_2$ bond coating on 316L SS.

Figure 5.24 FE-SEM analysis along with EDS point analysis showing the elemental composition of flame-sprayed HA/TiO$_2$ bond coating on Ti-6-4 alloy.

Figure 5.25 Cross-sectional SEM and EDS elemental maps of flame sprayed HA-A coating on 316L SS (scale bar = 50 µm).

Figure 5.26 Cross-sectional SEM and EDS elemental maps of flame sprayed HA-A coating on Ti-6-4 alloy (scale bar = 50 µm).

Figure 5.27 Cross-sectional SEM and EDS elemental maps of flame sprayed HA-B coating on 316L SS (scale bar = 50 µm).

Figure 5.28 Cross-sectional SEM and EDS elemental maps of flame sprayed HA-B coating on Ti-6-4 alloy (scale bar = 50 µm).
Figure 5.29 Cross-sectional SEM and EDS elemental maps of flame sprayed HA-TiO$_2$ composite coating on 316L SS (scale bar = 20 µm).

Figure 5.30 Cross-sectional SEM and EDS elemental maps of flame sprayed HA-TiO$_2$ composite coating on Ti-6-4 alloy (scale bar = 50 µm).

Figure 5.31 Cross-sectional SEM and EDS elemental maps of flame sprayed HA/TiO$_2$ bond coating on 316L SS (scale bar = 100 µm).

Figure 5.32 Cross-sectional SEM and EDS elemental maps of flame sprayed HA/TiO$_2$ bond coating on Ti-6-4 alloy (scale bar = 20 µm).

Figure 5.33 Graphical representation of surface roughness results for the (1) HA-A (2) HA-B (3) HA-TiO$_2$ and (4) HA/TiO$_2$ coated 316L SS substrates.

Figure 5.34 Graphical representation of surface roughness results for the (1) HA-A, (2) HA-B, (3) HA-TiO$_2$ and (4) HA/TiO$_2$ coated Ti-6-4 alloy substrates.

Figure 5.35 Bond strength of the (1) HA-A, (2) HA-B, (3) HA-TiO$_2$ and (4) HA/TiO$_2$ coatings.

Figure 5.36 Failure surface images of coated surfaces for flame-sprayed (a) HA-A coating (b) HA-B coated (c) HA-TiO$_2$ composite coating and (d) HA/TiO$_2$ bond coating, [cohesive (co) and adhesive (ad) strength].

Figure 6.1 The potentiodynamic curves of flame-sprayed (1) HA-A coated (2) HA-B coated (3) HA-TiO$_2$ coated (4) HA/TiO$_2$ coated (5) un-coated, 316L SS specimens in Ringer’s solution at 37±1 °C temperature.

Figure 6.2 The potentiodynamic curves of flame-sprayed (1) HA-A coated (2) HA-B coated (3) HA-TiO$_2$ coated (4) HA/TiO$_2$ coated (5) un-coated, Ti-6-4 alloy specimens in Ringer’s solution at 37±1 °C temperature.

Figure 6.3 XRD pattern of flame sprayed HA-A coating on 316L SS after corrosion testing in Ringer’s solution at 37±1 °C temperature.

Figure 6.4 XRD pattern of flame sprayed HA-A coating on Ti-6-4 alloy after corrosion testing in Ringer’s solution at 37±1 °C temperature.

Figure 6.5 XRD pattern of flame-sprayed HA-B coating on 316L SS after corrosion testing in Ringer’s solution at 37±1 °C temperature [β-TCP (β), TTCP (T'), and HA (unmarked peaks)].
Figure 6.6 XRD pattern of flame-sprayed HA-B coating on Ti-6-4 alloy after corrosion testing in Ringer’s solution at 37±1 °C temperature [β-TCP (β), TTCP (T'), and HA (unmarked peaks)].

Figure 6.7 XRD pattern of flame sprayed HA-TiO$_2$ composite coating on 316L SS, after corrosion testing in Ringer’s solution at 37±1 °C temperature [HA (H), TiO$_2$ rutile (T), α-TCP (α) and β-TCP (β)].

Figure 6.8 XRD pattern of flame sprayed HA-TiO$_2$ composite coating on Ti-6-4 alloy after corrosion testing in Ringer’s solution at 37±1 °C temperature [HA (H), TiO$_2$ rutile (T), TTCP (T'), α-TCP (α) and β-TCP (β)].

Figure 6.9 XRD pattern of flame sprayed HA/TiO$_2$ bond coating on 316L SS after corrosion testing in Ringer’s solution at 37±1 °C temperature [HA (unmarked peaks), TTCP (T')].

Figure 6.10 XRD pattern of flame sprayed HA/TiO$_2$ bond coating on Ti-6-4 alloy after corrosion testing in Ringer’s solution at 37±1 °C temperature [HA (unmarked peaks), TTCP (T') and β-TCP (β)].

Figure 6.11 FE-SEM along with EDS point analysis of flame spray HA-A coated 316L SS after corrosion testing in Ringer’s solution.

Figure 6.12 FE-SEM along with EDS point analysis of flame spray HA-A coated Ti-6-4 alloy after corrosion testing in Ringer’s solution.

Figure 6.13 FE-SEM along with EDS point analysis of flame spray HA-B coated 316L SS after corrosion testing in Ringer’s solution.

Figure 6.14 FE-SEM along with EDS point analysis of flame spray HA-B coated Ti-6-4 alloy after corrosion testing in Ringer’s solution.

Figure 6.15 FE-SEM along with EDS point analysis of flame spray HA-TiO$_2$ composite coating on 316L SS, after corrosion testing in Ringer’s solution.

Figure 6.16 FE-SEM along with EDS point analysis of flame spray HA-TiO$_2$ composite coating on Ti-6-4 alloy, after corrosion testing in Ringer’s solution.

Figure 6.17 FE-SEM along with EDS point analysis of flame spray HA/TiO$_2$ bond coating on 316L SS, after corrosion testing in Ringer’s solution.
Figure 6.18 FE-SEM along with EDS point analysis of flame spray HA/TiO$_2$ bond coating on Ti-6-4 alloy, after corrosion testing in Ringer’s solution.

Figure 6.19 Cross-sectional SEM micrograph and EDS elemental maps of uncoated 316L SS after corrosion testing in Ringer’s solution (scale bar = 5 µm).

Figure 6.20 Cross-sectional EDS elemental maps of uncoated Ti-6-4 alloy after corrosion testing in Ringer’s solution (scale bar = 5 µm).

Figure 6.21 Cross-sectional EDS elemental maps of flame spray HA-A coated 316L SS after corrosion testing in Ringer’s solution (scale bar = 10 µm).

Figure 6.22 Cross-sectional EDS elemental maps of flame spray HA-A coated Ti-6-4 alloy after corrosion testing in Ringer’s solution (scale bar = 50 µm).

Figure 6.23 Cross-sectional EDS elemental maps of flame spray HA-B coated 316L SS after corrosion testing in Ringer’s solution (scale bar = 20 µm).

Figure 6.24 Cross-sectional EDS elemental maps of flame spray HA-B coated Ti-6-4 alloy after corrosion testing in Ringer’s solution (scale bar = 20 µm).

Figure 6.25 Cross-sectional EDS elemental maps of flame spray HA-TiO$_2$ composite coating on 316L SS after corrosion testing in Ringer’s solution (scale bar = 10 µm).

Figure 6.26 Cross-sectional EDS elemental maps of flame spray HA-TiO$_2$ composite coating on Ti-6-4 alloy after corrosion testing in Ringer’s solution (scale bar = 50 µm).

Figure 6.27 Cross-sectional EDS elemental maps of flame spray HA/TiO$_2$ bond coating on 316L SS after corrosion testing in Ringer’s solution (scale bar = 20 µm).

Figure 6.28 Cross-sectional EDS elemental maps of flame spray HA/TiO$_2$ bond coating on Ti-6-4 alloy after corrosion testing in Ringer’s solution (scale bar = 100 µm).

Figure 7.1 MTT assay results of polystyrene culture plates (control), high-velocity flame spray HA-A, HA-B, HA-TiO$_2$ and HA/TiO$_2$ coated 316L SS and Ti-6-4 specimens, after 7 days of incubation in culture medium. Each value and error bar represents the mean of triplicate samples and its
standard deviation.

Figure 7.2 MTT assay results of polystyrene culture plates (control), high-velocity flame spray HA-A, HA-B, HA-TiO$_2$ and HA/TiO$_2$ coated 316L SS and Ti-6-4 specimens, after 14 days of incubation in culture medium. Each value and error bar represents the mean of triplicate samples and its standard deviation.

Figure 7.3 SEM micrographs of flame sprayed HA-A coated (a) 316L SS and (b) Ti-6-4 alloy specimens after 14 days of incubation in culture medium.

Figure 7.4 SEM micrographs of flame sprayed HA-B coated (a) 316L SS and (b) Ti-6-4 alloy specimens after 14 days of incubation in culture medium.

Figure 7.5 SEM micrographs of flame sprayed HA-TiO$_2$ coated (a) 316L SS and (b) Ti-6-4 alloy specimens after 14 days of incubation in culture medium.

Figure 7.6 SEM micrographs of flame sprayed HA/TiO$_2$ coated (a) 316L SS and (b) Ti-6-4 alloy specimens after 14 days of incubation in culture medium.