List of Figures

Figure 1.1 Structure of (a) crystalline (b) amorphous semiconductor.
Figure 1.2 Schematic illustrations of (a) energy bands in crystalline semiconductors (b) energy states in amorphous semiconductors.
Figure 1.3 Volume vs. temperature curve for glass forming systems.
Figure 1.4 Classification of disorder.
Figure 1.5 Cohen, Fritzsche and Ovshinsky (CFO) model.
Figure 1.6 Davis and Mott model.
Figure 1.7 Mott, Davis and Street (MDS) model.
Figure 1.8 The pictorial representation of positive and negative charged defects formation from neutral dangling bond pair through exchange of electrons.
Figure 1.9 Positive correlation energy U associated with two electrons at one site turned into an effective negative correlation energy U_{eff} because of the configurational changes, “q” is configurational coordinate.
Figure 1.10 Structure and energy of various defect configurations in a two fold coordinated material. Arrow represents the spin of electron.
Figure 2.1 Comparison of chalcogenide materials with other materials.
Figure 3.1 DSC traces indicating determination of T_g.
Figure 3.2 Schematic diagram of conductivity setup.
Figure 4.1 XRD pattern of as-prepared $(\text{Se}_{80}\text{Te}_{20})_{100-x}\text{Ag}_x (0 \leq x \leq 4)$ bulk samples.
Figure 4.2 XRD pattern of $(\text{Se}_{80}\text{Te}_{20})_{100-x}\text{Ag}_x (0 \leq x \leq 4)$ bulk samples annealed at 348K [M= Monoclinic].
Figure 4.3 XRD pattern of $(\text{Se}_{80}\text{Te}_{20})_{100-x}\text{Ag}_x (0 \leq x \leq 4)$ bulk samples annealed at 398K [M= Monoclinic, H = Hexagonal].
Figure 4.4 XRD pattern of $(\text{Se}_{80}\text{Te}_{20})_{100-x}\text{Ag}_x (0 \leq x \leq 4)$ thin films annealed ~15K above T_g [M = Monoclinic, O = Orthorhombic, H = Hexagonal, C = Cubic].
Figure 4.5 Typical DSC traces for $(\text{Se}_{80}\text{Te}_{20})_{100-x}\text{Ag}_x$ glass (a) for $x = 2$ glass at different heating rates (b) $(\text{Se}_{80}\text{Te}_{20})_{100-x}\text{Ag}_x (0 \leq x \leq 4)$ glass at heating rate of 10K/min.
Figure 4.6 Plot of T_g vs. Ag at different heating rates.
Figure 4.7 Exothermic peaks before and after deconvolution peak for (a) (Se$_{80}$Te$_{20}$)$_{99}$Ag$_{1}$, (b) (Se$_{80}$Te$_{20}$)$_{98}$Ag$_{2}$, (c) (Se$_{80}$Te$_{20}$)$_{97}$Ag$_{3}$ and (d) (Se$_{80}$Te$_{20}$)$_{96}$Ag$_{4}$ glassy samples. The upper peak shows the best theoretical fit with the simulated base line for the peak while the two deconvoluted exotherms are shown in the lower part. The peak positions at the respective temperatures are also shown in the figure.

Figure 4.8 Plot of T_g with lnβ for (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (0 ≤ x ≤ 4) glassy system.

Figure 4.9 Plot of ln($T_g^{2/\beta}$) vs. $1000/T_g$ for (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (0 ≤ x ≤ 4) glassy system.

Figure 4.10 Plot of ln($T_{p1}^{2/\beta}$) with $1000/T_{p1}$ for (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (0 ≤ x ≤ 4) system.

Figure 4.11 Plot of ln($T_{p2}^{2/\beta}$) with $1000/T_{p2}$ for (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (0 ≤ x ≤ 4) system.

Figure 4.12 Plot of ΔH_{gc} vs. Ag for (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (1 ≤ x ≤ 4) glassy system at different heating rates.

Figure 4.13 Plot of ΔS vs. Temperature for (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (1 ≤ x ≤ 4) glassy system at heating rate of 10 K/min.

Figure 4.14 Plot of ΔS_c vs. Ag for (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (1 ≤ x ≤ 4) system at different heating rates.

Figure 4.15 Plot of Fragility (F$_1$) vs. Ag for (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (1 ≤ x ≤ 4) glassy system at heating rate of 10K/min.

Figure 4.16 Plot of ΔG_{gc} vs. Ag for (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (1 ≤ x ≤ 4) at different heating rates.

Figure 4.17 Plot of C_p vs. Temperature for (a) (Se$_{80}$Te$_{20}$)$_{99}$Ag$_{1}$ (b) Se$_{80}$Te$_{20}$)$_{98}$Ag$_{2}$ (c) (Se$_{80}$Te$_{20}$)$_{97}$Ag$_{3}$ and (d) (Se$_{80}$Te$_{20}$)$_{96}$Ag$_{4}$ glassy samples.

Figure 4.18 Plot of ΔC_p vs. Ag for (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (1 ≤ x ≤ 4) glassy system at heating rate of 10K/min.

Figure 4.19 Plot of viscosity with $1000/T$ for (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (1 ≤ x ≤ 4) glassy system.

Figure 4.20 XRD spectra of (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (0 ≤ x ≤ 4) thin films.

Figure 4.21 XRD spectra of (Se$_{80}$Te$_{20}$)$_{96}$Ag$_{4}$ thin films at different thickness.

Figure 4.22 SEM spectra of a-(Se$_{80}$Te$_{20}$)$_{96}$Ag$_{4}$ thin film (Thickness = 950 nm).

Figure 4.23 Transmission and reflection spectrum of (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_{x}$ (0 ≤ x ≤ 4) thin films.
Figure 4.24 Transmission and reflection spectra of (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{96}Ag\textsubscript{4} thin films at different thickness.

Figure 4.25 Plot of (ahv)$^{1/2}$ vs. hv for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{100-\textit{x}}Ag\textsubscript{\textit{x}} (0 ≤ \textit{x} ≤ 4) thin films.

Figure 4.26 Plot of (ahv)$^{1/2}$ vs. hv for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{96}Ag\textsubscript{4} thin films at different thickness.

Figure 4.27 Plot of lnα with hv for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{100-\textit{x}}Ag\textsubscript{\textit{x}} (0 ≤ \textit{x} ≤ 4) thin films.

Figure 4.28 Plot of refractive index (n) and extinction coefficient (k) vs. wavelength (λ) for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{100-\textit{x}}Ag\textsubscript{\textit{x}} (0 ≤ \textit{x} ≤ 4) thin films.

Figure 4.29 Plot of refractive index (n) and extinction coefficient (k) vs. wavelength (λ) for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{96}Ag\textsubscript{4} thin films at different thickness.

Figure 4.30 Plot of refractive index factor (n2−1)$^{-1}$ vs. (hv)2 for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{100-\textit{x}}Ag\textsubscript{\textit{x}} (0 ≤ \textit{x} ≤ 4) thin films.

Figure 4.31 Plot of refractive index factor (n2−1)$^{-1}$ against (hv)2 for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{96}Ag\textsubscript{4} thin films at different thickness.

Figure 4.32 Plot of dielectric constants, ε\textsubscript{r} and ε\textsubscript{i} with hv for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{100-\textit{x}}Ag\textsubscript{\textit{x}} (0 ≤ \textit{x} ≤ 4) thin films.

Figure 4.33 Plot of dielectric constants, ε\textsubscript{r} and ε\textsubscript{i} with hv for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{96}Ag\textsubscript{4} thin films at different thickness.

Figure 4.34 Temperature dependent dark conductivity (σ\textsubscript{d}) for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{100-\textit{x}}Ag\textsubscript{\textit{x}} (0 ≤ \textit{x} ≤ 4) thin films.

Figure 4.35 Variation of photoconductivity with the inverse temperature at light intensity of 100lux for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{100-\textit{x}}Ag\textsubscript{\textit{x}} (0 ≤ \textit{x} ≤ 4) thin films.

Figure 4.36 Variation of photoconductivity with the inverse temperature at light intensity of 200lux for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{100-\textit{x}}Ag\textsubscript{\textit{x}} (0 ≤ \textit{x} ≤ 4) thin films.

Figure 4.37 Variation of photoconductivity with the inverse temperature at light intensity of 800lux for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{100-\textit{x}}Ag\textsubscript{\textit{x}} (0 ≤ \textit{x} ≤ 4) thin films.

Figure 4.38 Variation of photoconductivity with the inverse temperature at light intensity of 1200lux for (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{100-\textit{x}}Ag\textsubscript{\textit{x}} (0 ≤ \textit{x} ≤ 4) thin films.

Figure 4.39 Plot of photocurrent (I\textsubscript{ph}) with light intensity (F) in (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{100-\textit{x}}Ag\textsubscript{\textit{x}} (1 ≤ \textit{x} ≤ 4) thin films.

Figure 4.40 Rise of photocurrent with time at room temperature at different light intensities of (Se\textsubscript{80}Te\textsubscript{20})\textsubscript{98}Ag\textsubscript{2} thin film samples.
Figure 4.41 Decay of photocurrent with time at room temperature at different light intensities of (Se$_{80}$Te$_{20}$)$_{98}$Ag$_2$ thin film samples.

Figure 4.42 Rise and decay of the photocurrent with time at room temperature and fixed intensity (1200lux) for (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_x$ ($1 \leq x \leq 4$) thin films.

Figure 4.43 XRD patterns of (a) as-deposited (b) annealed between T$_g$ and T$_c$ (343K) of (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_x$ ($0 \leq x \leq 4$) ultra-thin films [M = Monoclinic, H = Hexagonal, O = Orthorhombic].

Figure 4.44 Transmission and reflection spectra of as-deposited and annealed (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_x$ ($0 \leq x \leq 4$) ultra-thin films.

Figure 4.45 Plot of $(\alpha h\nu)^{1/2}$ vs. $h\nu$ for as-deposited and annealed (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_x$ ($0 \leq x \leq 4$) ultra-thin films.

Figure 4.46 Plot of $\ln \alpha$ vs. $h\nu$ for as-deposited and annealed (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_x$ ($0 \leq x \leq 4$) ultra-thin films.

Figure 4.47 SEM micrographs of as-deposited Se–Te–Ag ultra-thin films, (a) SEM micrograph of as-deposited (Se$_{80}$Te$_{20}$)$_{98}$Ag$_2$ ultra-thin films, (b) SEM micrograph of as-deposited (Se$_{80}$Te$_{20}$)$_{96}$Ag$_4$ ultra-thin films, (c) SEM micrograph of point l present on Figure 4.47(b) at higher magnification, (d) SEM micrograph of point m present on Figure 4.47(b) at higher magnification, (e) SEM micrograph of (Se$_{80}$Te$_{20}$)$_{96}$Ag$_4$ ultra-thin films annealed below T$_g$, (f) SEM micrograph of (Se$_{80}$Te$_{20}$)$_{96}$Ag$_4$ ultra-thin films annealed between T$_g$ and T$_c$.

Figure 4.48 Plot of refractive index (n) and extinction coefficient (k) vs. wavelength (λ) for as-deposited and annealed (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_x$ ($0 \leq x \leq 4$) ultra-thin films.

Figure 4.49 Plot of dark conductivity (σ_d) with 1000/T for (a) as-deposited (b) annealed (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_x$ ($0 \leq x \leq 4$) ultra-thin films.

Figure 4.50 Plot of $\ln(\sigma_d)$ vs. ΔE for as-deposited and annealed (Se$_{80}$Te$_{20}$)$_{100-x}$Ag$_x$ ($0 \leq x \leq 4$) thin films.