List of tables

Chapter 2

Table 1 Details (elevation, sampling duration, trail length and effort along each trail) of the sampled sites inside Namdapha Tiger Reserve. Sampling in Phase I was carried out from January 2009–April 2010 and in Phase II was carried out from November 2010–February 2012.

Table 2 Summary of the total effort (km) and number of detections of the four hornbill species in each of the strata across the different months (monthly variation), and across the three sampling areas (spatial variation).

Table 3 Summary of the mean and 95% Confidence Intervals (CI) of the flock size, detection probability and density of the four hornbill species (Great, Rufous-necked, Wreathed and White-throated Brown Hornbill) across months and sampling areas.

Chapter 3

Table 1 Species and number of trees monitored monthly for fruit crops across two years (2009-10 and 2010-11).

Table 2 Number of sightings of the three hornbill species across months and trails.

Table 3 Hornbill food plant species, fruit type and number of fruit tree watches that were conducted across three years (2009-2012) in the intensive study area (Hornbill plateau) in Namdapha Tiger Reserve.

Table 4 Summary of number of hornbill sightings seen overall and foraging on different plant species for the three large hornbill species during time constrained searches and trail walks.

Table 5 The structure of the different candidate models and ΔAIC_c value to identify the influence of fig and non-fig fruit availability on hornbill abundance for a) Great Hornbills, b) Wreathed Hornbills and c) Rufous-necked Hornbills.

Table 6 Model averaged coefficients, their associated 95% CI and the relative variable importance values for models examining the relationship between hornbill abundance and fig and non-fig fruit availability for the three hornbill species, Great, Wreathed and Rufous-necked Hornbill.

Table 7 The structure of the different candidate models along with model type (Zero-inflated Poisson (ZIP) or Zero-inflated Negative Binomial (ZINB)) and ΔAIC_c value to identify the influence of fruit crop size and ambient hornbill encounter rate on a) Great Hornbills on figs, b) Wreathed Hornbills on figs, c) Rufous-necked Hornbills.
Hornbills on figs and d) Rufous-necked on non-fig fruiting trees. Analysis for Great and Wreathed Hornbill visitation rates on non-fig fruiting trees was not carried out due to limited detections.

Table 8 Model averaged coefficients, their associated 95% CI and the relative variable importance values of the two predictors for models examining visitation rates of the three hornbill species (Great, Wreathed and Rufous-necked) as a function of ambient hornbill encounter rates and/or ripe fruit crop size (natural logarithm) for two different fruit types (fig and non-fig trees). Analysis for Great and Wreathed Hornbill visitation rates on non-fig fruiting trees was not carried out due to limited detections.

Chapter 4

Table 1 Fruit and seed characteristics of large-seeded tree species observed for frugivore visitation.

Table 2 Information on tree and fruit type, tree height and abundances of the 18 species of hornbill food plants that were detected in the belt transects across the 24 sampling units.

Table 3 Observed and expected (with SD) Moran’s I autocorrelation coefficients for the encounter rates (km$^{-1}$) of three hornbill species and the overall seed arrival (seed arrival of five species that were studied) across the two years (2010-11 and 2011-12).

Table 4 Structure of models in a mixture model framework (ZIP: Zero-inflated Poisson model, ZINB: Zero-inflated Negative Binomial model) with ΔAICc values that were used for model selection for identifying variables that explained variation in abundances of a) Great Hornbill in 2010-11, b) Great Hornbill in 2011-12, c) Rufous-necked Hornbill in 2010-11, d) Rufous-necked Hornbill in 2011-12, e) Wreathed Hornbill in 2010-11 and f) Wreathed Hornbill in 2011-12.

Table 5 Cumulative AICc weight of the explanatory variables from the candidate models and their model-averaged coefficients and 95% CI.

Table 6 Structure of models in a generalized linear model and generalized least squares framework with negative binomial error structure with ΔAICc as model selection criteria to examine if variation in seed arrival rates were explained by variation in overall hornbill abundances. In generalized least squares, we examined the relationship using different correlation structures.

Table 7 Coefficients and 95% CI of the overall hornbill encounter rate as obtained from Generalized Linear Models with negative binomial error structure (GLM-NB). Overall hornbill encounter rate was used as a predictor to explain the variation in seed arrival rates. In case of Generalized Least Square (GLS), the coefficients are
model-averaged estimates from the set of five models including the model with no correlation structure.

Chapter 6

Table 1 Details of sites sampled for hornbill species in Arunachal Pradesh, north-east India (Fig. 1) during state-wide and intensive surveys, with the site name, trail lengths, name of protected area, reserved forest or unclassed forest, elevational range of sampling, total sampling effort, and sampling period.

Table 2 Results of a generalized linear model, with negative binomial errors, of encounter rates for the Great Hornbill *Buceros bicornis*, the Rufous-necked Hornbill *Aceros nipalensis* and the Wreathed Hornbill *Rhyticeros undulatus* across the three administrative regimes, with AICc and ΔAICc values. Parameter estimates and associated standard errors are given for the Rufous-necked and Wreathed Hornbills and mean and bootstrapped 95% CI are given for all the three species.

Table 3 Summary of key informant surveys, with the number of potential sites (where each species could be present, based on their elevational and geographical ranges), the number of sites where we detected the species, the number of sites where the species was present according to the key informants but where we failed to detect it, and the number of sites where the species was not seen by key informants in the previous 5 years.

Table 4 Results of *DISTANCE* analysis of the density of Great, Rufous-necked and Wreathed Hornbills at the intensively sampled protected area site (Namdapha Tiger Reserve) and outside the protected area (including four reserved forest and two unclassed forest sites).