CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 General</td>
<td>1</td>
</tr>
<tr>
<td>1.1 State of the Art</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Refinements Needed In Simulation Approach</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Vision Statement</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Objectives and Scope of the Work</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Structure of the Thesis Report</td>
<td>7</td>
</tr>
</tbody>
</table>

2 TRAFFIC FLOW MODELLING APPROACHES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Traffic Flow Characteristics</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Categorisation of Traffic Flow Models</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Traffic Stream Parameters</td>
<td>12</td>
</tr>
<tr>
<td>2.4 Deterministic Approach</td>
<td>13</td>
</tr>
<tr>
<td>2.4.1 Empirical Models</td>
<td>14</td>
</tr>
<tr>
<td>2.4.2 Car-Following Models</td>
<td>16</td>
</tr>
<tr>
<td>2.4.3 Fluid Flow Analogy Approach</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Probabilistic Approach</td>
<td>19</td>
</tr>
<tr>
<td>2.6 Simulation Approach</td>
<td>20</td>
</tr>
<tr>
<td>2.6.1 Microscopic Simulation Models</td>
<td>21</td>
</tr>
<tr>
<td>2.6.2 Sub Microscopic Simulation Models</td>
<td>21</td>
</tr>
<tr>
<td>2.6.3 Cellular Automaton Models</td>
<td>22</td>
</tr>
<tr>
<td>2.7 Simulation Studies In Mixed Traffic</td>
<td>23</td>
</tr>
<tr>
<td>2.8 Need for an Integrated Approach</td>
<td>29</td>
</tr>
<tr>
<td>2.9 Conclusions</td>
<td>30</td>
</tr>
</tbody>
</table>

3 ARTIFICIAL NEURAL NETWORKS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 Introduction</td>
<td>31</td>
</tr>
<tr>
<td>3.1 Applications of Neural Networks for Traffic Engineering</td>
<td>32</td>
</tr>
</tbody>
</table>
3.2 Artificial Neural Networks 35
3.3 Network Architecture 37
3.3.1 Multi-layer Feed forward Networks (MFNN) 37
3.3.2 Recurrent Neural Networks (RNN) 37
3.4 Learning Process 38
3.4.1 Concept of Back-Propagation Algorithm 39
3.4.2 Rate of Learning 40
3.5 Conclusions 41

4 DEVELOPMENT OF COMPONENT MODELS 42
4.0 General 42
4.1 Desired Linear and Lateral Clearances 42
4.1.1 Literature Review 43
4.1.2 Data Collection 44
4.1.3 Data Retrieval 45
4.1.4 Regression Analysis of Frontal Spacings 46
4.1.5 Regression Models Reflecting Driver Behaviour 54
4.1.6 Neural Network Models of Frontal Spacings 57
4.2 Lateral Clearances 62
4.2.1 Data Collection 62
4.2.2 Regression Analysis of Lateral Clearances 63
4.2.3 Models Reflecting Driver Behaviour 67
4.3 Lateral Placement of Vehicles 68
4.3.1 Literature Review 68
4.3.2 Data Collection and Analysis 69
4.3.3 Regression Models of Free Lateral Placement of Vehicles 76
4.4 Headway Distribution 76
4.5 Free Flow Speeds 78
4.5.1 Literature Review 79
4.5.2 Data Collection and Analysis 79
4.6 Threshold headway for free flowing vehicles 80
4.6.1 Literature Review 81
4.6.2 Data Collection and Analysis 81
4.7 Rate of Lateral Movement 82
4.7.1 Data Collection and Analysis 82
4.8 Conclusions 84

5 DEVELOPMENT OF CAR FOLLOWING MODELS 85
5.0 General 85
5.1 Car Following Models 86
5.2 Literature Review 87
5.3 Data Collection 91
5.4 Response – Stimulus Models 92
5.5 Neural Network Model 93
5.5.1 Representation of Vehicles in Neural Model 94
5.6 Comparison of Neural and Car Following Models 96
5.7 Conclusions 100

6 DEVELOPMENT OF ACCELERATION/ DECELERATION MODELS 101
6.0 General 101
6.1 Acceleration and Deceleration Models 101
6.2 Literature Review 103
6.3 Data Collection 105
6.3.1 Methods of Data Collection 106
6.3.2 Data Retrieval Process 107
6.3.3 Estimation of Positions of Vehicles 109
6.3.4 Estimation of Speed and Acceleration Profiles 109
6.4 Development of Acceleration Models 110
6.4.1 Models to Reflect Driver Behaviour 114
6.5 Development of Deceleration Models 116
6.6 Conclusions 120

7 DEVELOPMENT OF SIMULATION MODEL 121
7.0 General 121
7.1 Language Selection 121
7.2 Internal Book Keeping 122
7.3 Time Flow Mechanism 123
7.4 General Description of the Model 124
7.4.1 Input Module
7.4.2 Random Numbers
7.4.3 Generation of Non Uniform Variates
7.4.4 Generation of Vehicle Arrivals
7.5 Vehicle Characterisation
7.5.1 Physical Dimensions of the Vehicles
7.5.2 Free Flow Speeds
7.5.3 Free Lateral Placement
7.5.4 Vehicle Placement
7.6 Vehicle Manoeuvring Logic
7.7 Output Module
7.7.1 Graphics Output Module
7.8 Determination of Warm-Up Zone Length
7.9 Validation of the Model
7.10 Conclusions
8 EXPERIMENTS USING SIMULATION MODEL
8.0 General
8.1 Experimental Framework
8.2 Characteristic Study of Single Vehicle Streams
8.3 Experiments with Different Mix Proportions
8.4 Effect of Auto-Rickshaw on Stream Characteristics
8.5 Correlation Analysis Between Stream Characteristics & Proportions of Different Vehicles
8.6 Study on Interaction Effect of Different Classes of Vehicles In the Stream
8.7 Determination of Service Volumes for Different Levels-of-Service (Los)
8.8 Computation of Passenger Car Units at Various Levels of Service
8.9 Comparison of the Results of the Study with Reported Results of Other Researchers
8.10 Conclusions
9 SUMMARY, CONCLUSIONS AND SCOPE FOR FURTHER
9.1 Summary and Conclusions
9.2 Contributions of the Study 212
9.3 Limitations of the Study 213
9.4 Scope for Further Work 214

REFERENCES 217