Bibliography


Anil AC (1991) Studies on macrofouling ecology of cirripedes in Hamana Bay (Japan), D. Agr. Thesis, Faculty of Agriculture, University of Tokyo, Tokyo, Japan

Anil AC (1986) Studies on marine biofouling in the Zuari estuary (Goa) west coast of India. Ph.D. thesis, Karnataka University, India


Barnes H (1962a) So-called anecdysis in *Balanus balanoides* the effect of breeding upon the growth of the calcareous shell of some common barnacles. Limnol Oceanogr 7:462-473

Barnes H (1962b) Note on variations in the release of nauplii of *Semibalanus balanoides* with special reference to the spring diatom out burst. Crustaceana 4:118-122


Bigford TE (1978) Effect of several diets on survival, development time and growth of laboratory reared spider crab *Libinia emarginata* larvae. Fish Bull USA, pp 76-59


Clemmesen C (1988) A RNA and DNA fluorescence technique to evaluate the nutritional condition of individual marine fish larvae. Meeresforsch 32: 134-143


Connell JH (1961a) Effects of competition, predation by *Thais lapillus* and other factors on natural population of the barnacle *Balanus balanoides*. Ecological Monographs 31: 61-104


Crisp DJ (1962) The planktonic stages of the cirripedia *Balanus balaniodes* (L) and *Balanus balanus* (L) from north temperate waters, Crustaceana 3: 207-221

Crisp DJ, Costlow JD Jr (1963) The chemical basis of gregariousness in cirripedes. Oikos 14: 22-34

Crisp DJ, Meadows (1962) The tolerance of developing embryos to salinity and temperature. Oikos 14: 22-34


Crisp DJ (1986) In, Indian Ocean, Biology of benthic marine organisms, edited by Thompson MF et al., AA Balkema, Rotterdam, pp 69-84


Harmes J (1986) Effects of temperature and salinity on larval development of Eliminius modestus (Crustacea, Cirripedia) from Helgoland (North sea) and New Zealand. Helgolander Meersunters 40: 355-376


Karande AA (1965) On cirripede crustaceans (barnacles) an important fouling group in Bombay waters. Proc Symp Crust (Ser 4) 1245-1252


Karande AA (1967) On cirripede crustaceans (barnacles) an important fouling group in Bombay waters. Proc Symp Crust Ernakulum Cochin (Ser 4) 1942-1952 (Mar Biol Am India)

Karande AA (1973) Larval development of *Balanus amphitrite* Darwin reared in the laboratory. Proc Indian Acad Sci 77: 56-63

Karande AA (1974) *Balanus variegatus*, the laboratory reared larvae compared with *Balanus amphitrite amphitrite* (Cirripedia). Crustaceana 26: 56-63


Knowlton RE (1974) Larval developmental process and controlling factors in decapod crustacea, with emphasis on caridea. Thalassia Yugoslavia 10: 139-158


Patel B, Crisp DJ (1960a) Rates of development of the embryos of several species of barnacles. Physiol Zool 33: 104-119


Pitcher GC, Walker DR, Mitchell-Innes BA, Moloney CI (1991) Short term variability during an anchor station study in the southern Benguela upwelling system: phytoplankton dynamics. Prog Oceanogr 28: 29-64


Raimondi PT (1990) Patterns, mechanisms, consequences of variability in settlement and recruitment of an intertidal barnacle. Ecol Monogr 60: 283-309


systems, Nair KVK, Venugopalan VP (eds.) Marine biofouling and power plants. pp 19-34


Smayda TJm, Bienfang PK (1983) Suspension properties of various groups of phytoplankton and tintinnids in an oligotrophic, subtropical system. P S Z N I Mar Ecol 4: 289-300


Smayda TJ, Boleyn BJ (1966a) Experimental observations on the flotation of marine diatoms. II. Skeletonema costatum and Rhizosolenia setigera. Limnol Oceanogr 11: 18-34


Steinberg PD, Chneider RS, Kjelleberg S (1997) Chemical defenses of seaweeds against microbial colonization. Biodegradation 1-10


Subrahmanyan R (1959) Studies on the phytoplankton of the west coast of India. Parts I and II. Proc Idian Acad Sci 50B :113-187


Walker G (1980) A study of the oviducal glands and ovisacs of Balanus balanoides (L), together with comparative observations on the ovisacs of Balanus hameri (Ascanius) and the reproductive biology of the two species. Phil. Trans R Soc Lond (B) 191: 147-162


* Not referred to in original