ABBREVIATIONS

NHA nitrogen-heterocyclic aromatics
PANH polyaromatic nitrogen heterocycles
NPAC nitrogen polycyclic aromatic compound
PAH polyaromatic hydrocarbon(s)
NSO nitrogen-sulphur-oxygen
ASW artificial seawater
TLC thin layer chromatography
HQ hydroxyquinoline
UV ultra-violet
GC gas chromatography
IR infra-red
INT 2-(4-iodophenyl) –3-(4-nitrophenyl)-5 phenyl – 2H – tetrazonium chloride
PMS phenazine methosulphate
NTG N-methyl,N’-nitro, N-nitrosoguanidine
LTS long termed starved (cells)
STS short termed starved (cells)
BHCO Bombay High crude oil
\(\varepsilon \) absorption (extinction coefficient)
\(V_{\text{max}} \) maximum velocity
\(\lambda_{\text{max}} \) wavelength of maximum light absorbance
\(q \) specific quinoline conversion rate
ppt parts per thousand
ppm parts per million
rpm revolutions per minute
\(g \) gram(s)
\(mg \) milligram(s)
\(m \) metre(s)
\(nm \) nanometer
\(n\text{moles} \) nanomoles
\(A \) absorbance
\(h \) hour(s)
\(\text{min} \) minute(s)
\(ml \) millilitre(s)
\(l \) litre(s)
\(M \) molar
\(mM \) millimolar
\(\mu M \) micromolar
\(w/v \) weight by volume
\(v/v \) volume by volume
\(^\circ C \) degree Centigrade
CONTENTS

I Introduction and review of literature ... 1

II Isolation of a marine bacterium degrading quinoline and other nitrogen heterocyclic aromatic compounds. ... 26

III Efficacy of *Pseudomonas* sp. strain GU104 in mineralization of quinoline in continuous culture. ... 44

IV Mode of biodegradation of quinoline by strain GU104. ... 57

V Contribution of *Pseudomonas* sp. strain GU104 in mineralization of crude oil. ... 81

VI Summary ...109

VII Bibliography ...114

Appendix ...128