CONTENTS

CHAPTER I

1. GENERAL INTRODUCTION

Applications of iron oxides

National and international scenario of ferrites

Iron oxide sources for ferrites manufacture

Iron ores in Goa and India

Iron ore rejects and iron ore fines, Blue dust

Ferrite grade iron oxide from iron ore fines (India)

India and world ferrite market

utilization of iron ores and ore rejects

1.1 Upgradation of Iron ores

1.1.1 Physical beneficiation

Goan facilities to beneficiate iron ores

Jigging of Barsuan Iron ores (India)

Floatation beneficiation of Goan ore

Flocculation studies on Donimalai (India) ore

Selective oil agglomeration of Nigerian ore

Flocculation of hematite ore fines of India

1.1.2 Chemical beneficiation

Four zones of iron ore horizon of Goa

Dissolution characteristics of ore - a subterranean
Solution activity - mechanism for blue dust formation - pH and dissolution relation

Enhancement of the dissolution using complexing agents, chelating agents.

a) Redox dissolution: hydrazine

Clue for chemical beneficiation

Reaction of hydrazine with Fe₂O₃/Fe₃O₄

Reductive dissolution of MnO₂ by hydrazine

Selective extraction of cobalt from nickel laterite using N₂H₄·H₂SO₄

1.2 Iron oxides

1.3 Ferrites

Applications of ferrites

1.3.1 Historical developments

Load stone or magnetite.

First synthesis of ferrite, MFe₂O₄ spinel

1.3.2 Crystal structure of spinel ferrites

a) Normal spinel ferrites

b) Inverse spinel ferrites

c) Random spinel ferrites

1.3.3 Cation distribution in spinels

1.3.4 Properties of ferrites

Extrinsic and intrinsic properties
a) Electrical properties
 i. Resistivity
 ii. Dielectric behaviour

b) Magnetic properties
 i. Saturation magnetization
 ii. Permeability
 iii. Hysteresis

Soft and hard ferrites
 iv. Susceptibility

1.3.5 Synthesis of Ferrites
 a) Ceramic technique: Solid state technique
 b) Mechanism of solid state reaction
 case A: Counter diffusion
 case B: Preferential diffusion of anions
 case C: Preferential diffusion of iron
 c) Conventional ceramic technique
 d) Precursor technique
 i. Hydroxide precursors
 ii. Carboxylate precursors
 iii. Hydrazinate precursors
 e) Wet chemical method
 Combustion process
 Spray reactions
Freeze drying
hydrothermal oxidation

f) Other methods
Explosion method
Supercritical drying
Anodic dissolution
Hot isostatic pressing

1.4 Historical and structural background of Gamma iron oxide, γ-Fe$_2$O$_3$

1.4.1 A brief review of Fe-O system

1.4.2 Gamma ferric oxide

Oxidation of Fe$_3$O$_4$ to γ-Fe$_2$O$_3$

Importance of water vapour in Fe$_3$O$_4$ oxidation

Similarity in LiFe$_5$O$_8$ and HFe$_5$O$_8$

Hydrogen iron oxide phase

Crystalline arrangement of γ-Fe$_2$O$_3$

1.5 Importance of γ-Fe$_2$O$_3$ in ferrite synthesis

Superior reactivity of γ-Fe$_2$O$_3$ to α-Fe$_2$O$_3$

1.6 Aim, scope, methodology and work plan

1.6.1 Aim

1.6.2 Scope

1.6.3 Methodology
CHAPTER II

2. METHODS OF PREPARATION AND CHARACTERIZATION

2.1 Methods of preparation of precursors and oxides

2.1.1 Preparation of precursors

a) Iron hydroxides and iron oxyhydroxides

b) Iron (II) carboxylato - hydrazinate

2.1.2 Preparation of oxides of iron

2.1.3 Preparation of magnesium ferrite, MgFe₂O₄

a) Preheating

b) Sintering

i. Presintering

ii. Final sintering

2.2 Methods of characterization of precursors and oxides

2.2.1 Chemical analysis

a) Analysis of metal content

b) C, H, N analysis

c) Hydrazine estimation

2.2.2 Infra red analysis

2.2.3 Density

2.2.4 Thermal analysis

a) Isothermal studies

b) Thermogravimetric analysis (TGA)

c) Differential thermal analysis (DTA)
d) Electrothermal analysis (ETA)

2.2.5 Decomposition of precursors
 a) Decomposition in different atmosphere
 b) Autocatalytic decomposition

2.2.6 X-ray diffraction analysis

2.2.7 Magnetic characterization of ferrites
 a) Alternating current (ac) hysteresis loop tracer
 b) A.C. susceptibility
 c) Initial permeability

2.2.8 Mossbauer spectroscopy

2.2.9 Microstructure

2.2.10 Electrical characteristics of iron oxides and ferrites
 a) Conductivity of γ-Fe$_2$O$_3$ in different atmospheres
 b) Resistivity of magnesium ferrite in air

2.2.11 Dielectric constant

CHAPTER III

3. SYNTHESIS OF γ-Fe$_2$O$_3$

3.1 Literature survey on γ-Fe$_2$O$_3$ preparation

Part- I: Studies on synthesis, characterization and decomposition of iron oxyhydroxides

3.2 Experimental: Preparation, characterization and thermal decomposition
3.2.1 Chemical beneficiation of iron ore reject

a) Direct precipitation of Fe(OH)_3 from acid extract of the ore

b) Preparation of ferric nitrate and ferrous chloride, from Fe(OH)_3 of ore rejects.

3.2.2 Synthesis of iron oxyhydroxides: From ferric nitrate and ferrous chloride prepared from Fe(OH)_3 of iron ore

a) γ-FeOOH

b) α-FeOOH

c) Amorphous FeOOH

3.2.3 Hydrazination of iron hydroxide and iron oxyhydroxides

a) Equilibration method

3.2.4 Characterization

a) Chemical analysis

b) Infrared analysis

c) Density measurements

d) X-ray diffraction

e) magnetic characterization

f) Mössbauer studies

3.2.5 Thermal analysis and decomposition

a) TG and isothermal

b) Thermal decomposition of iron hydroxide/oxyhydroxides

i) Air decomposition
ii N_2

iii $N_2 + H_2O + air$

iv $N_2 + MeOH$

v $N_2 + IPA$

vi $N_2 + cyclohexane$

c) Autocatalytic decomposition of iron hydroxides/ oxyhydroxides

3.2.6 Hydrazine equilibration studies of iron oxyhydroxides by electrical conductivity measurements

a) Variation of electrical conductivity on hydrazination as a function of time

3.3 Results and discussions

3.3.1 Fixation of chemical formulas

a) Chemical formulas of iron oxyhydroxides

i Chemical analysis

ii Infrared analysis

iii Pycnometric density

iv TG and total mass loss

b) Hydrazine equilibration of hydroxide/ oxyhydroxides

i Equilibration in 80% and 99-100% hydrazine hydrate

ii Hydrazine estimation

iii Variation of d.c. electrical conductivity during hydrazination as a function of time
c) Analysis of the thermal products of iron oxyhydroxides and hydrazinated iron oxyhydroxides
 i X-ray diffraction analysis
 ii IR. Analysis
 iii Magnetic characterisation
 iv Mössbauer spectroscopy

d) Decomposition of Fe(OH)_3 and hydrazinated Fe(OH)_3 of iron ore

e) Mechanism of γ-Fe_2O_3 formation

3.3.2 Conclusions

Part II: Synthesis of γ-Fe_2O_3 from iron(II) carboxylato-hydrazinates

3.4 Experimental: Preparation, characterization and decomposition

3.4.1 Synthesis of iron (II) carboxylato-hydrazinates
 a) Solution method
 i Ferrous fumarato-hydrazinate (FFH)
 ii Ferrous succinato-hydrazinate (FSH)
 iii Ferrous malonato-hydrazinate (FMH)
 iv Ferrous maleato-hydrazinate (FEH)
 v Ferrous malato-hydrazinate (FLH)
 b) Equilibration method
 i Ferrous tatrato-hydrazinate (FTH)

3.4.2 Characterisation
 a) Chemical analysis
i Hydrazine estimation 133
ii C,11,N analysis 133
iii Iron content 134

b) Infra red analysis 134
c) Density measurements 134

3.4.3 Thermal decomposition studies 134

a) Thermogravimetric analysis(TGA) and Differential thermal analysis (DTA) 134
b) Isothermal weight loss studies 134
c) Autocatalytic decomposition 135

3.4.4 Phase identification and magnetic studies on the thermal products 135

a) X-ray diffraction 135
b) Magnetic characterization 135

3.4.5 Microstructure analysis 136

3.5 Results and discussions 136

a) Fixation of chemical formulas of iron (II) carboxylato-hydrazinates 136

i Infra red analysis 136
ii Chemical analysis 140
iii Total weight loss studies 140
iv Pycnometric studies 143
b) Formation of γ-Fe$_2$O$_3$ from iron (II) carboxylato-hydrazinate

i Thermal analysis and hydrazine estimation of thermal products

ii X-ray characterization

iii IR analysis

C) Magnetic characterization and microstructural analysis

3.6 Conclusions

CHAPTER IV

4. STUDY OF FERRITES

4.1 Introduction

4.2 Experimental: Preparation and characterization

4.2.1 Preparation of ferrites: ceramic technique

a) Preheating of raw meal

b) High temperature heating of preheated samples

i Pellet formation

c) Final sintering

i pellet/torroid formation

d) coding of MgFe$_2$O$_4$

4.2.2 Characterization

a) X-ray diffraction studies

b) Infra red analysis
c) Magnetic characterization
 i Saturation magnetization 174
 ii A.C. Susceptibility 175
 iii Initial permeability 175
d) Electrical characteristics
 i Resistivity 176
 ii Dielectric constant 176

4.3 Results and discussion
 a) Phase identification by XRD 177
 b) Infra red analysis 184
 c) Magnetic characterization 188
 i Saturation magnetization 188
 ii A.C. Susceptibility 193
 iii Initial permeability 194
d) Electrical properties 202
 i Resistivity 202
 ii Dielectric constant 210

CHAPTER V

5 IMPORTANCE OF WATER IN STABILISING γ-Fe₂O₃ 215

5.1 Introduction 215

5.2 Experimental: Preparation and characterization 219

5.2.1 Preparation of γ-Fe₂O₃ 219
FFHA, FSHA, FMHA, FTHA, FEHA and FLHA

γ-FHA and γ-FHHA

5.2.2 Standard γ-Fe₂O₃

5.2.3 Characterization

a) X-ray diffraction

b) Infra red analysis

c) Magnetic characteristics

5.2.4 Thermal analysis

TG/DTA/DSC

5.2.5 Direct current electrical conductivity in air, N₂ and N₂/H₂O atmosphere

5.3 Results and discussions

5.3.1 Direct current (dc) electrical conductivity of γ-Fe₂O₃ in air, N₂ and in air after equilibrating in water vapours

5.3.1.a Hysteresis behaviour of conductivity

FFHA, FSHA, FMHA, FTHA, FEHA and FLHA

Standard γ-Fe₂O₃

Arrhenius plot

γ-FHA and γ-FHHA

γ-FHA

i Electro-thermal analysis

ii Study of electrical conductivity of γ-FHA

5.4 General Conclusions

XIII