List of Figures

2.1 Gamma versus Mean Number of Customers in the system 28
2.2 Gamma versus $F_{int}, F_{idle}, F_{idle+busy}$ 29
2.3 Gamma versus Rate at which server breakdown occurs and Effective service rate 29
2.4 Gamma versus expected total cost 30
2.5 Gamma versus Mean Number of Customers in the System 37
2.6 Gamma versus Fraction of Time the Server is Interrupted 37
2.7 Gamma versus Fraction of Time the Server is Idle 38
2.8 Gamma versus effective service rate 38
2.9 Gamma versus Fraction of time the Server breakdown occurs 39
2.10 Tree structure of the model 39
2.11 Tree structure of the model 40
3.1 Gamma versus Mean Number of Customers in the System 61
3.2 Gamma versus Fraction of Time the Server is Interrupted 62
3.3 Gamma versus Fraction of Time the Server is Idle 62
3.4 Gamma versus Effective Service Rate 63
3.5 Gamma versus and Rate at which server break down occurs 63
3.6 Gamma versus Mean Number of Customers in the System. 74

3.7 Gamma versus Fraction of Time the Server is Interrupted. 74

3.8 Gamma versus Fraction of Time the Server is Idle 75

3.9 Gamma versus Effective Service Rate. 75

3.10 Gamma versus Effective Service Rate and Rate at which server breakdown occurs .. 75

4.1 p_1 versus Mean Number of Customers in the System 85

4.2 p_1 versus Fraction of time the server is busy with high priority service but no preempted customer in the system 86

4.3 p_1 versus Fraction of time the server is busy with low priority service 87

4.4 p_1 versus Fraction of time the server is busy with high priority service 87

4.5 p_1 versus Effective service rate of low priority customers 88

4.6 p_1 versus fraction of time the server is idle 88

5.1 Gamma versus Mean number of customers in the system 96

5.2 Gamma versus Fraction of time the server is interrupted 96

5.3 Gamma versus Fraction of time the server is Idle 97

5.4 Gamma versus Effective service Rate 97

5.5 Gamma versus Rate at which server breakdown occurs 97

6.1 Gamma versus Mean Number of Customers in the System 100

6.2 Gamma versus Fraction of time the server is interrupted 100

6.3 Gamma versus Fraction of time the server is idle 101

6.4 Gamma versus Effective service rate 102

6.5 Gamma versus $\rho = \pi A_0 e / \pi A_0 e$ 102
List of Acronyme

\begin{itemize}
\item \textit{CTMC} - Continuous time Markov Chain.
\item \textit{Diag} - Diagonal matrix.
\item \textit{ER} - Erlang distribution.
\item \textit{EX} - Exponential distribution.
\item \textit{Exp(.)} - Exponential distribution with parameter \((.)\).
\item \textit{FIFO} - First in First out.
\item \textit{IP} - Interruption Clock.
\item \textit{LIQBD} - Level independent Quasi death Process.
\item \textit{MAP} - Markovian Arrival Process.
\item \textit{MC} - Markov Chain.
\item \textit{MMAP} - Marked Markovian Arrival Process.
\item \textit{PH} - Phase type distribution.
\item \textit{SC} - Super Clock.
\item \textit{TC} - Threshold Clock.
\end{itemize}

List of symbols

\begin{itemize}
\item \(\otimes\) - Kronecker product.
\item \(A \oplus B\) - Kronecker sum of matrices \(A\) and \(B\). ie, \(A \otimes I + I \otimes B\).
\item \(e\) - The column vector of dimension \(r\) consisting of 1's.
\item \(\varepsilon\) - column vector of 1's of appropriate order.
\item \(e_j(r)\) - Column vector of dimension \(r\) with 1 in the \(j^{th}\) place and zero elsewhere.
\item \(I_r\) - Identity matrix of dimension \(r\).
\item \(m \times n\) - \(m\) by \(n\).
\item \(E_s\) - Expected time of service completion.
\item \(\mu_{\tilde{T}}\) - Mean of \(PH(\alpha, \tilde{T})\).
\item \(\sigma_{\tilde{T}}^2\) - Variance of \(PH(\alpha, \tilde{T})\).
\item \(\tilde{\cdot}\) - Denote transpose of a matrix.
\item \(R\) - Denote rate matrix.
\item \(G\) - Stochastic matrix.
\item \(*\) - Convolution.
\item \(\text{diag}[A_1, A_2]\) - Denote a diagonal matrix with diagonal elements \(A_1, A_2\).
\item \(\text{diag}[F_{(i,i-1)}]\) - A diagonal matrix whose \(i^{th}\) diagonal element is \(F_{(i,i-1)}\).
\end{itemize}